BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 3447169)

  • 21. Modulation of the association reaction between hemoglobin and carbon monoxide by proton and chloride.
    Perrella M; Ripamonti M; Caccia S
    Biochemistry; 1998 Feb; 37(7):2017-28. PubMed ID: 9485328
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Contribution of surface histidyl residues in the alpha-chain to the Bohr effect of human normal adult hemoglobin: roles of global electrostatic effects.
    Sun DP; Zou M; Ho NT; Ho C
    Biochemistry; 1997 Jun; 36(22):6663-73. PubMed ID: 9184146
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A mutagenic study of the allosteric linkage of His(HC3)146 beta in haemoglobin.
    Shih DT; Luisi BF; Miyazaki G; Perutz MF; Nagai K
    J Mol Biol; 1993 Apr; 230(4):1291-6. PubMed ID: 8487305
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Assessment of roles of surface histidyl residues in the molecular basis of the Bohr effect and of beta 143 histidine in the binding of 2,3-bisphosphoglycerate in human normal adult hemoglobin.
    Fang TY; Zou M; Simplaceanu V; Ho NT; Ho C
    Biochemistry; 1999 Oct; 38(40):13423-32. PubMed ID: 10529219
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Quantitative evaluation for the role of beta 146 His and beta 143 His residues in the Bohr effect of human hemoglobin in the presence of 0.1 M chloride ion.
    Matsukawa S; Itatani Y; Mawatari K; Shimokawa Y; Yoneyama Y
    J Biol Chem; 1984 Sep; 259(18):11479-86. PubMed ID: 6470009
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The pKa values of two histidine residues in human haemoglobin, the Bohr effect, and the dipole moments of alpha-helices.
    Perutz MF; Gronenborn AM; Clore GM; Fogg JH; Shih DT
    J Mol Biol; 1985 Jun; 183(3):491-8. PubMed ID: 4020866
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Probing the diphosphoglycerate binding pocket of HbA and HbPresbyterian (beta 108Asn --> Lys).
    Gottfried DS; Manjula BN; Malavalli A; Acharya AS; Friedman JM
    Biochemistry; 1999 Aug; 38(35):11307-15. PubMed ID: 10471280
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structures of R- and T-state hemoglobin Bassett: elucidating the structural basis for the low oxygen affinity of a mutant hemoglobin.
    Safo MK; Abdulmalik O; Lin HR; Asakura T; Abraham DJ
    Acta Crystallogr D Biol Crystallogr; 2005 Feb; 61(Pt 2):156-62. PubMed ID: 15681866
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A possible allosteric communication pathway identified through a resonance Raman study of four beta37 mutants of human hemoglobin A.
    Peterson ES; Friedman JM
    Biochemistry; 1998 Mar; 37(13):4346-57. PubMed ID: 9521755
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Role of the beta 146 histidyl residue in the alkaline Bohr effect of hemoglobin.
    Russu IM; Ho NT; Ho C
    Biochemistry; 1980 Mar; 19(5):1043-52. PubMed ID: 7356961
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Roles of the beta 146 histidyl residue in the molecular basis of the Bohr effect of hemoglobin: a proton nuclear magnetic resonance study.
    Busch MR; Mace JE; Ho NT; Ho C
    Biochemistry; 1991 Feb; 30(7):1865-77. PubMed ID: 1993201
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The reaction kinetics of four sheep haemoglobins with identical alpha-chains.
    Dodgson SJ; Holland RA
    Respir Physiol; 1983 Jul; 53(1):31-45. PubMed ID: 6194549
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Determination of the rate and equilibrium constants for oxygen and carbon monoxide binding to R-state human hemoglobin cross-linked between the alpha subunits at lysine 99.
    Vandegriff KD; Le Tellier YC; Winslow RM; Rohlfs RJ; Olson JS
    J Biol Chem; 1991 Sep; 266(26):17049-59. PubMed ID: 1910038
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Direct determination of protonation states of histidine residues in a 2 A neutron structure of deoxy-human normal adult hemoglobin and implications for the Bohr effect.
    Kovalevsky AY; Chatake T; Shibayama N; Park SY; Ishikawa T; Mustyakimov M; Fisher Z; Langan P; Morimoto Y
    J Mol Biol; 2010 Apr; 398(2):276-91. PubMed ID: 20230836
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Structural and functional studies of hemoglobin Wayne: an elongated alpha-chain variant.
    Moo-Penn WF; Jue DL; Johnson MH; McDonald MJ; Turci SM; Shih TB; Jones RT; Therrell BL; Arnone A
    J Mol Biol; 1984 Dec; 180(4):1119-40. PubMed ID: 6527384
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Self-association of haemoglobin Olympia (alpha 2 beta 2 20 (B2) Val----Met). A human haemoglobin bearing a substitution at the surface of the molecule.
    Edelstein SJ; Poyart C; Blouquit Y; Kister J
    J Mol Biol; 1986 Jan; 187(2):277-89. PubMed ID: 3701868
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Functional studies on hemoglobin opossum. Conclusions drawn regarding the role of the distal histidine.
    Sharma VS; John ME; Waterman MR
    J Biol Chem; 1982 Oct; 257(20):11887-92. PubMed ID: 7118915
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Increased oxygen affinity for hemoglobin Sawara: alphaA4(6) aspartic acid replaced by alanine.
    Sasaki J; Imamura T; Sumida I; Yanase T; Ohya M
    Biochim Biophys Acta; 1977 Nov; 495(1):183-6. PubMed ID: 20980
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of intra- and intersubunit hydrogen bonds on the R-T transition in human hemoglobin as studied with alpha 42(C7) and beta 145(HC2) mutations.
    Togi A; Ishimori K; Unno M; Konno T; Morishima I; Miyazaki G; Imai K
    Biochemistry; 1993 Sep; 32(38):10165-9. PubMed ID: 8399142
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Reconstitution of human fetal hemoglobin from isolated alpha and gamma chains.
    Kawamura-Konishi Y; Suzuki H
    Biochem Int; 1989 Sep; 19(3):469-76. PubMed ID: 2479381
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.