BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 34471770)

  • 1. Assessment of the Redox Characteristics of Iron Ore by Introducing Biomass Ash in the Chemical Looping Combustion Process: Biomass Ash Type, Constituent, and Operating Parameters.
    Mu L; Huo Z; Chu F; Wang Z; Shang Y; Yin H; Xu T
    ACS Omega; 2021 Aug; 6(33):21676-21689. PubMed ID: 34471770
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prospects and issues of integration of co-combustion of solid fuels (coal and biomass) in chemical looping technology.
    Bhui B; Vairakannu P
    J Environ Manage; 2019 Feb; 231():1241-1256. PubMed ID: 30602249
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Performance of electronic waste based mixed metal oxide as novel oxygen carriers for chemical looping co-combustion of high ash coal and rice straw.
    Bhui B; Prabu V
    Waste Manag; 2022 Feb; 138():199-209. PubMed ID: 34902682
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative Study: Impacts of Ca and Mg Salts on Iron Oxygen Carriers in Chemical Looping Combustion of Biomass.
    Yilmaz D; Steenari BM; Leion H
    ACS Omega; 2021 Jun; 6(25):16649-16660. PubMed ID: 34235337
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chemical looping hydrogen production with modified iron ore as oxygen carriers using biomass pyrolysis gas as fuel.
    Xu T; Xiao B; Fu G; Yang S; Wang X
    RSC Adv; 2019 Nov; 9(67):39064-39075. PubMed ID: 35540691
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Control methods for mitigating biomass ash-related problems in fluidized beds.
    Vamvuka D; Zografos D; Alevizos G
    Bioresour Technol; 2008 Jun; 99(9):3534-44. PubMed ID: 17826986
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemical composition and physical properties of filter fly ashes from eight grate-fired biomass combustion plants.
    Lanzerstorfer C
    J Environ Sci (China); 2015 Apr; 30():191-7. PubMed ID: 25872727
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermodynamic analysis of in situ gasification-chemical looping combustion (iG-CLC) of Indian coal.
    Suresh PV; Menon KG; Prakash KS; Prudhvi S; Anudeep A
    Environ Sci Pollut Res Int; 2016 Oct; 23(20):20111-20119. PubMed ID: 26564191
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of Temperature, Operation Mode, and Steam Concentration on Alkali Release in Chemical Looping Conversion of Biomass-Experimental Investigation in a 10 kW
    Gogolev I; Soleimanisalim AH; Mei D; Lyngfelt A
    Energy Fuels; 2022 Sep; 36(17):9551-9570. PubMed ID: 36091479
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrotalcite-Derived Copper-Based Oxygen Carrier Materials for Efficient Chemical-Looping Combustion of Solid Fuels with CO
    High M; Patzschke CF; Zheng L; Zeng D; Xiao R; Fennell PS; Song Q
    Energy Fuels; 2022 Sep; 36(18):11062-11076. PubMed ID: 36148001
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cu
    Lysowski R; Ksepko E
    Waste Manag; 2024 Mar; 175():146-156. PubMed ID: 38199169
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimizing performance of iron-rich sludge ash as cost-effective oxygen carrier by calcium-based additive for syngas production from biomass chemical-looping gasification.
    Fang H; Yi F; Sun M; Gao H; Dai Y; Wang X; Wang Y; Guo K; Chen J; Zhu Y
    Bioresour Technol; 2023 Oct; 385():129400. PubMed ID: 37380037
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Life cycle assessment of a biomass based chemical looping combustion.
    Mercado JP; Ubando AT; Gonzaga JA; Naqvi SR
    Environ Res; 2023 Jan; 217():114876. PubMed ID: 36435501
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CO
    Alalwan HA; Alminshid AH
    Sci Total Environ; 2021 Sep; 788():147850. PubMed ID: 34134392
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electroremediation of straw and co-combustion ash under acidic conditions.
    Lima AT; Ottosen LM; Ribeiro AB
    J Hazard Mater; 2009 Jan; 161(2-3):1003-9. PubMed ID: 18499343
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highly Efficient Oxygen-Storage Material with Intrinsic Coke Resistance for Chemical Looping Combustion-Based CO2 Capture.
    Imtiaz Q; Kurlov A; Rupp JL; Müller CR
    ChemSusChem; 2015 Jun; 8(12):2055-65. PubMed ID: 25916240
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization study and five-cycle tests in a fixed-bed reactor of titania-supported nickel oxide as oxygen carriers for the chemical-looping combustion of methane.
    Corbella BM; de Diego LF; García-Labiano F; Adánez J; Palaciost JM
    Environ Sci Technol; 2005 Aug; 39(15):5796-803. PubMed ID: 16124317
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis of Cu-rich, Al2O3-stabilized oxygen carriers using a coprecipitation technique: redox and carbon formation characteristics.
    Imtiaz Q; Kierzkowska AM; Broda M; Müller CR
    Environ Sci Technol; 2012 Mar; 46(6):3561-6. PubMed ID: 22356662
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electric arc furnace dust as an alternative low-cost oxygen carrier for chemical looping combustion.
    Kuo YL; Huang WC; Tseng YH; Chang SH; Ku Y; Lee HY
    J Hazard Mater; 2018 Jan; 342():297-305. PubMed ID: 28846916
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrodialytic removal of Cd from biomass combustion fly ash suspensions.
    Kirkelund GM; Damoe AJ; Ottosen LM
    J Hazard Mater; 2013 Apr; 250-251():212-9. PubMed ID: 23454460
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.