BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 34471817)

  • 1. Cationic Modulation of Voltage-Gated Sodium Channel (Nav1.5): Neonatal Versus Adult Splice Variants-2. Divalent (Cd
    Onkal R; Fraser SP; Djamgoz MBA
    Bioelectricity; 2019 Sep; 1(3):148-157. PubMed ID: 34471817
    [No Abstract]   [Full Text] [Related]  

  • 2. Cationic Modulation of Voltage-Gated Sodium Channel (Nav1.5): Neonatal Versus Adult Splice Variants-1. Monovalent (H
    Onkal R; Fraser SP; Djamgoz MBA
    Bioelectricity; 2019 Sep; 1(3):139-147. PubMed ID: 34471816
    [No Abstract]   [Full Text] [Related]  

  • 3. Alternative splicing of Nav1.5: an electrophysiological comparison of 'neonatal' and 'adult' isoforms and critical involvement of a lysine residue.
    Onkal R; Mattis JH; Fraser SP; Diss JK; Shao D; Okuse K; Djamgoz MB
    J Cell Physiol; 2008 Sep; 216(3):716-26. PubMed ID: 18393272
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Potent Inactivation-Dependent Inhibition of Adult and Neonatal NaV1.5 Channels by Lidocaine and Levobupivacaine.
    Elajnaf T; Baptista-Hon DT; Hales TG
    Anesth Analg; 2018 Sep; 127(3):650-660. PubMed ID: 29958221
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential modulation of fast inactivation in cardiac sodium channel splice variants by Fyn tyrosine kinase.
    Iqbal SM; Andavan GS; Lemmens-Gruber R
    Cell Physiol Biochem; 2015; 37(3):825-37. PubMed ID: 26382759
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Potent inhibition by ropivacaine of metastatic colon cancer SW620 cell invasion and NaV1.5 channel function.
    Baptista-Hon DT; Robertson FM; Robertson GB; Owen SJ; Rogers GW; Lydon EL; Lee NH; Hales TG
    Br J Anaesth; 2014 Jul; 113 Suppl 1():i39-i48. PubMed ID: 24852501
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The neonatal splice variant of Nav1.5 potentiates in vitro invasive behaviour of MDA-MB-231 human breast cancer cells.
    Brackenbury WJ; Chioni AM; Diss JK; Djamgoz MB
    Breast Cancer Res Treat; 2007 Jan; 101(2):149-60. PubMed ID: 16838113
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conservation of alternative splicing in sodium channels reveals evolutionary focus on release from inactivation and structural insights into gating.
    Liavas A; Lignani G; Schorge S
    J Physiol; 2017 Aug; 595(16):5671-5685. PubMed ID: 28621020
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neonatal Na
    Fraser SP; Onkal R; Theys M; Bosmans F; Djamgoz MBA
    Br J Pharmacol; 2022 Feb; 179(3):473-486. PubMed ID: 34411279
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Variable patterns of mutation density among NaV1.1, NaV1.2 and NaV1.6 point to channel-specific functional differences associated with childhood epilepsy.
    Encinas AC; Watkins JC; Longoria IA; Johnson JP; Hammer MF
    PLoS One; 2020; 15(8):e0238121. PubMed ID: 32845893
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhibitory effects of hesperetin on Nav1.5 channels stably expressed in HEK 293 cells and on the voltage-gated cardiac sodium current in human atrial myocytes.
    Wang H; Wang HF; Zhang H; Wang C; Chen YF; Ma R; Xiang JZ; Du XL; Tang Q
    Acta Pharmacol Sin; 2016 Dec; 37(12):1563-1573. PubMed ID: 27694909
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isoform-selective effects of isoflurane on voltage-gated Na+ channels.
    OuYang W; Hemmings HC
    Anesthesiology; 2007 Jul; 107(1):91-8. PubMed ID: 17585220
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Alternative splicing potentiates dysfunction of early-onset epileptic encephalopathy SCN2A variants.
    Thompson CH; Ben-Shalom R; Bender KJ; George AL
    J Gen Physiol; 2020 Mar; 152(3):. PubMed ID: 31995133
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spliced isoforms of the cardiac Nav1.5 channel modify channel activation by distinct structural mechanisms.
    Mancino AS; Glass WG; Yan Y; Biggin PC; Bowie D
    J Gen Physiol; 2022 May; 154(5):. PubMed ID: 35297947
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Beyond CBD: Inhibitory effects of lesser studied phytocannabinoids on human voltage-gated sodium channels.
    Milligan CJ; Anderson LL; McGregor IS; Arnold JC; Petrou S
    Front Physiol; 2023; 14():1081186. PubMed ID: 36891145
    [No Abstract]   [Full Text] [Related]  

  • 16. Structure and function of hainantoxin-III, a selective antagonist of neuronal tetrodotoxin-sensitive voltage-gated sodium channels isolated from the Chinese bird spider Ornithoctonus hainana.
    Liu Z; Cai T; Zhu Q; Deng M; Li J; Zhou X; Zhang F; Li D; Li J; Liu Y; Hu W; Liang S
    J Biol Chem; 2013 Jul; 288(28):20392-403. PubMed ID: 23703613
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Contributions of S- and R-citalopram to the citalopram-induced modulation of the function of Nav1.5 voltage-gated sodium channels.
    Nakatani Y; Amano T
    Eur J Pharmacol; 2021 Oct; 908():174316. PubMed ID: 34280395
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiple Nav1.5 isoforms are functionally expressed in the brain and present distinct expression patterns compared with cardiac Nav1.5.
    Wang J; Ou SW; Bai YF; Wang YJ; Xu ZD; Luan GM
    Mol Med Rep; 2017 Jul; 16(1):719-729. PubMed ID: 28560448
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neonatal Nav1.5 protein expression in normal adult human tissues and breast cancer.
    Yamaci RF; Fraser SP; Battaloglu E; Kaya H; Erguler K; Foster CS; Djamgoz MBA
    Pathol Res Pract; 2017 Aug; 213(8):900-907. PubMed ID: 28698102
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential Inhibition of Neuronal Sodium Channel Subtypes by the General Anesthetic Isoflurane.
    Zhou C; Johnson KW; Herold KF; Hemmings HC
    J Pharmacol Exp Ther; 2019 May; 369(2):200-211. PubMed ID: 30792243
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.