These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 34472067)

  • 1. Using FTIR Imaging to Investigate Silk Fibroin-Based Materials.
    Zhong J; Zhou X; Ye C; Yu W; Tang Y
    Methods Mol Biol; 2021; 2347():207-219. PubMed ID: 34472067
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synchrotron FTIR microspectroscopy of single natural silk fibers.
    Ling S; Qi Z; Knight DP; Shao Z; Chen X
    Biomacromolecules; 2011 Sep; 12(9):3344-9. PubMed ID: 21790142
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preparation and characterization of silk fibroin as a biomaterial with potential for drug delivery.
    Zhang H; Li LL; Dai FY; Zhang HH; Ni B; Zhou W; Yang X; Wu YZ
    J Transl Med; 2012 Jun; 10():117. PubMed ID: 22676291
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of dialysis and freezing on structural conformation, thermal properties and morphology of silk fibroin hydrogels.
    Ribeiro M; de Moraes MA; Beppu MM; Monteiro FJ; Ferraz MP
    Biomatter; 2014; 4():e28536. PubMed ID: 24646905
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A robust spectroscopic method for the determination of protein conformational composition - Application to the annealing of silk.
    Belton DJ; Plowright R; Kaplan DL; Perry CC
    Acta Biomater; 2018 Jun; 73():355-364. PubMed ID: 29649640
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct Observation of Native Silk Fibroin Conformation in Silk Gland of
    Hu L; Han Y; Ling S; Huang Y; Yao J; Shao Z; Chen X
    ACS Biomater Sci Eng; 2020 Apr; 6(4):1874-1879. PubMed ID: 33455357
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Silk Fibroin Degradation Related to Rheological and Mechanical Properties.
    Partlow BP; Tabatabai AP; Leisk GG; Cebe P; Blair DL; Kaplan DL
    Macromol Biosci; 2016 May; 16(5):666-75. PubMed ID: 26756449
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A study on the flow stability of regenerated silk fibroin aqueous solution.
    Wang H; Zhang Y; Shao H; Hu X
    Int J Biol Macromol; 2005 Jul; 36(1-2):66-70. PubMed ID: 15916801
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrasound regulated flexible protein materials: Fabrication, structure and physical-biological properties.
    Cai B; Gu H; Wang F; Printon K; Gu Z; Hu X
    Ultrason Sonochem; 2021 Nov; 79():105800. PubMed ID: 34673337
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Silk as templates for hydroxyapatite biomineralization: A comparative study of Bombyx mori and Antheraea pernyi silkworm silks.
    Zhang H; You R; Yan K; Lu Z; Fan Q; Li X; Wang D
    Int J Biol Macromol; 2020 Dec; 164():2842-2850. PubMed ID: 32828890
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Macro/microporous silk fibroin scaffolds with potential for articular cartilage and meniscus tissue engineering applications.
    Yan LP; Oliveira JM; Oliveira AL; Caridade SG; Mano JF; Reis RL
    Acta Biomater; 2012 Jan; 8(1):289-301. PubMed ID: 22019518
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Silk I and Silk II studied by fast scanning calorimetry.
    Cebe P; Partlow BP; Kaplan DL; Wurm A; Zhuravlev E; Schick C
    Acta Biomater; 2017 Jun; 55():323-332. PubMed ID: 28389368
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synchrotron FTIR Microspectroscopy Methods to Understand the Conformation of Single Animal Silk Fibers.
    Ye C; Cao L; Ling S
    Methods Mol Biol; 2021; 2347():193-205. PubMed ID: 34472066
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancement of antioxidant ability of Bombyx mori silk fibroins by enzymatic coupling of catechin.
    Qi C; Wang P; Cui L; Deng C; Yu Y; Wang Q; Fan X
    Appl Microbiol Biotechnol; 2016 Feb; 100(4):1713-1722. PubMed ID: 26481627
    [TBL] [Abstract][Full Text] [Related]  

  • 15. HRP-mediated graft polymerization of acrylic acid onto silk fibroins and in situ biomimetic mineralization.
    Zhou B; Zhou Q; Wang P; Yuan J; Yu Y; Deng C; Wang Q; Fan X
    J Mater Sci Mater Med; 2018 May; 29(6):72. PubMed ID: 29796746
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural Comparison of Various Silkworm Silks: An Insight into the Structure-Property Relationship.
    Guo C; Zhang J; Jordan JS; Wang X; Henning RW; Yarger JL
    Biomacromolecules; 2018 Mar; 19(3):906-917. PubMed ID: 29425447
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Grafting versus Crosslinking of Silk Fibroin-g-PNIPAM via Tyrosine-NIPAM Bridges.
    Radu IC; Biru IE; Damian CM; Ion AC; Iovu H; Tanasa E; Zaharia C; Galateanu B
    Molecules; 2019 Nov; 24(22):. PubMed ID: 31766195
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New process to form a silk fibroin porous 3-D structure.
    Tamada Y
    Biomacromolecules; 2005; 6(6):3100-6. PubMed ID: 16283733
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural changes of Bombyx mori fibroin from silk gland to fiber as evidenced by Terahertz spectroscopy and other methods.
    Wu X; Wu X; Shao M; Yang B
    Int J Biol Macromol; 2017 Sep; 102():1202-1210. PubMed ID: 28487194
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Flexibility regeneration of silk fibroin in vitro.
    Zhang C; Song D; Lu Q; Hu X; Kaplan DL; Zhu H
    Biomacromolecules; 2012 Jul; 13(7):2148-53. PubMed ID: 22632113
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.