These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 34472164)

  • 21. Metabolic and physiological adaptations of microalgal growth-promoting bacterium Azospirillum brasilense growing under biogas atmosphere: a microarray-based transcriptome analysis.
    Garciglia-Mercado C; Contreras CA; Choix FJ; de-Bashan LE; Gómez-Anduro GA; Palacios OA
    Arch Microbiol; 2024 Mar; 206(4):173. PubMed ID: 38492040
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The ipdC, hisC1 and hisC2 genes involved in indole-3-acetic production used as alternative phylogenetic markers in Azospirillum brasilense.
    Jijón-Moreno S; Marcos-Jiménez C; Pedraza RO; Ramírez-Mata A; de Salamone IG; Fernández-Scavino A; Vásquez-Hernández CA; Soto-Urzúa L; Baca BE
    Antonie Van Leeuwenhoek; 2015 Jun; 107(6):1501-17. PubMed ID: 25842039
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cultivation factors and population size control the uptake of nitrogen by the microalgae Chlorella vulgaris when interacting with the microalgae growth-promoting bacterium Azospirillum brasilense.
    de-Bashan LE; Antoun H; Bashan Y
    FEMS Microbiol Ecol; 2005 Oct; 54(2):197-203. PubMed ID: 16332319
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Alginate beads provide a beneficial physical barrier against native microorganisms in wastewater treated with immobilized bacteria and microalgae.
    Covarrubias SA; de-Bashan LE; Moreno M; Bashan Y
    Appl Microbiol Biotechnol; 2012 Mar; 93(6):2669-80. PubMed ID: 22038243
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Microalgae growth-promoting bacteria as "helpers" for microalgae: a novel approach for removing ammonium and phosphorus from municipal wastewater.
    de-Bashan LE; Hernandez JP; Morey T; Bashan Y
    Water Res; 2004 Jan; 38(2):466-74. PubMed ID: 14675659
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Enhanced activity of ADP glucose pyrophosphorylase and formation of starch induced by Azospirillum brasilense in Chlorella vulgaris.
    Choix FJ; Bashan Y; Mendoza A; de-Bashan LE
    J Biotechnol; 2014 May; 177():22-34. PubMed ID: 24576433
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Day and blue light modify growth, cell physiology and indole-3-acetic acid production of Azospirillum brasilense Az39 under planktonic growth conditions.
    Molina R; López G; Coniglio A; Furlan A; Mora V; Rosas S; Cassán F
    J Appl Microbiol; 2021 May; 130(5):1671-1683. PubMed ID: 32979295
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Synergic association of the consortium Arthrospira maxima with the microalga growth-promoting bacterium Azospirillum cultured under the stressful biogas composition.
    Choix FJ; Palacios OA; Mondragón-Cortez P; Ocampo-Alvarez H; Becerril-Espinosa A; Lara-González MA; Juárez-Carrillo E
    Bioprocess Biosyst Eng; 2024 Feb; 47(2):181-193. PubMed ID: 38231212
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Involvement of Azospirillum brasilense plasmid DNA in the production of indole acetic acid.
    Katzy EI; Iosipenko AD; Egorenkov DA; Zhuravleva EA; Panasenko VI; Ignatov VV
    FEMS Microbiol Lett; 1990 Oct; 60(1-2):1-4. PubMed ID: 2283026
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Alternative mechanism for the evaluation of indole-3-acetic acid (IAA) production by Azospirillum brasilense strains and its effects on the germination and growth of maize seedlings.
    Masciarelli O; Urbani L; Reinoso H; Luna V
    J Microbiol; 2013 Oct; 51(5):590-7. PubMed ID: 24037658
    [TBL] [Abstract][Full Text] [Related]  

  • 31. CELL-CELL INTERACTION IN THE EUKARYOTE-PROKARYOTE MODEL OF THE MICROALGAE CHLORELLA VULGARIS AND THE BACTERIUM AZOSPIRILLUM BRASILENSE IMMOBILIZED IN POLYMER BEADS(1).
    de-Bashan LE; Schmid M; Rothballer M; Hartmann A; Bashan Y
    J Phycol; 2011 Dec; 47(6):1350-9. PubMed ID: 27020359
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Characterization of carotenoids and genes encoding their biosynthetic pathways in Azospirillum brasilense.
    Mishra S; Singh Chanotiya C; Shanker K; Kumar Tripathi A
    FEMS Microbiol Lett; 2021 Apr; 368(5):. PubMed ID: 33629714
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Molecular cloning and sequence analysis of an Azospirillum brasilense indole-3-pyruvate decarboxylase gene.
    Costacurta A; Keijers V; Vanderleyden J
    Mol Gen Genet; 1994 May; 243(4):463-72. PubMed ID: 8202090
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Engineering D-glucose utilization in Azospirillum brasilense Sp7 promotes rice root colonization.
    Singh VS; Dubey BK; Rai S; Singh SP; Tripathi AK
    Appl Microbiol Biotechnol; 2022 Dec; 106(23):7891-7903. PubMed ID: 36334127
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nitric oxide metabolism and indole acetic acid biosynthesis cross-talk in Azospirillum brasilense SM.
    Koul V; Tripathi C; Adholeya A; Kochar M
    Res Microbiol; 2015 Apr; 166(3):174-85. PubMed ID: 25700632
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Regulation of IAA Biosynthesis in Azospirillum brasilense Under Environmental Stress Conditions.
    Molina R; Rivera D; Mora V; López G; Rosas S; Spaepen S; Vanderleyden J; Cassán F
    Curr Microbiol; 2018 Oct; 75(10):1408-1418. PubMed ID: 29980814
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Maize-Azospirillum brasilense interaction: accessing maize's miRNA expression under the effect of an inhibitor of indole-3-acetic acid production by the plant.
    Espindula E; Passaglia LMP
    Braz J Microbiol; 2024 Mar; 55(1):101-109. PubMed ID: 38214876
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Azospirillum brasilense produces the auxin-like phenylacetic acid by using the key enzyme for indole-3-acetic acid biosynthesis.
    Somers E; Ptacek D; Gysegom P; Srinivasan M; Vanderleyden J
    Appl Environ Microbiol; 2005 Apr; 71(4):1803-10. PubMed ID: 15812004
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Aerobic nitric oxide production by Azospirillum brasilense Sp245 and its influence on root architecture in tomato.
    Molina-Favero C; Creus CM; Simontacchi M; Puntarulo S; Lamattina L
    Mol Plant Microbe Interact; 2008 Jul; 21(7):1001-9. PubMed ID: 18533840
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Plant-growth-promoting compounds produced by two agronomically important strains of Azospirillum brasilense, and implications for inoculant formulation.
    Perrig D; Boiero ML; Masciarelli OA; Penna C; Ruiz OA; Cassán FD; Luna MV
    Appl Microbiol Biotechnol; 2007 Jul; 75(5):1143-50. PubMed ID: 17345081
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.