These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 34472338)

  • 1. δ-MoN Yolk Microspheres with Ultrathin Nanosheets for a Wide-Spectrum, Sensitive, and Durable Surface-Enhanced Raman Scattering Substrate.
    Li Y; Du R; Li W; Li J; Yang H; Bai H; Zou M; Xi G
    Anal Chem; 2021 Sep; 93(36):12360-12366. PubMed ID: 34472338
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Low temperature synthesis of plasmonic molybdenum nitride nanosheets for surface enhanced Raman scattering.
    Guan H; Yi W; Li T; Li Y; Li J; Bai H; Xi G
    Nat Commun; 2020 Aug; 11(1):3889. PubMed ID: 32753657
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nitrogen-Doped Titanium Monoxide Flexible Membrane for a Low-Cost, Biocompatible, and Durable Raman Scattering Substrate.
    Li J; Yi W; Li Y; Liu W; Bai H; Jiao Z; Zhang Y; Wang X; Zou M; Xi G
    Anal Chem; 2021 Sep; 93(37):12776-12785. PubMed ID: 34493037
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metallic and plasmonic MoO
    Li J; Bai H; Zhai J; Li W; Fan W; Xi G
    Chem Commun (Camb); 2019 Apr; 55(32):4679-4682. PubMed ID: 30938728
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selective Preparation of Mo
    Song X; Yi W; Li J; Kong Q; Bai H; Xi G
    Nano Lett; 2021 May; 21(10):4410-4414. PubMed ID: 33970632
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering.
    Driskell JD; Lipert RJ; Porter MD
    J Phys Chem B; 2006 Sep; 110(35):17444-51. PubMed ID: 16942083
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A deformable nanoplasmonic membrane reveals universal correlations between plasmon resonance and surface enhanced Raman scattering.
    Kang M; Kim JJ; Oh YJ; Park SG; Jeong KH
    Adv Mater; 2014 Jul; 26(26):4510-4. PubMed ID: 24668875
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plasmonic Rare-Earth Nanosheets as Surface Enhanced Raman Scattering Substrates with High Sensitivity and Stability for Multicomponent Analysis.
    Li J; Yi W; Yin M; Yang H; Li J; Li Y; Jiao Z; Bai H; Zou M; Xi G
    ACS Nano; 2022 Jan; 16(1):1160-1169. PubMed ID: 35023714
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Immobilized nanorod assemblies: fabrication and understanding of large area surface-enhanced Raman spectroscopy substrates.
    Greeneltch NG; Blaber MG; Henry AI; Schatz GC; Van Duyne RP
    Anal Chem; 2013 Feb; 85(4):2297-303. PubMed ID: 23343409
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molybdenum Nitride Porous Prisms with a Strong Plasmon Resonance Effect in the Visible Region for Surface-Enhanced Raman Spectroscopy.
    Song X; Li J; Kong Q; Bai H; Xi G
    J Phys Chem Lett; 2022 Jul; 13(29):6777-6782. PubMed ID: 35856813
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Beamed Raman: directional excitation and emission enhancement in a plasmonic crystal double resonance SERS substrate.
    Chu Y; Zhu W; Wang D; Crozier KB
    Opt Express; 2011 Oct; 19(21):20054-68. PubMed ID: 21997016
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Boosting Long-Range Surface-Enhanced Raman Scattering on Plasmonic Nanohole Arrays for Ultrasensitive Detection of MiRNA.
    Luo X; Zhu J; Jia W; Fang N; Wu P; Cai C; Zhu JJ
    ACS Appl Mater Interfaces; 2021 Apr; 13(15):18301-18313. PubMed ID: 33821612
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stealth surface modification of surface-enhanced Raman scattering substrates for sensitive and accurate detection in protein solutions.
    Sun F; Ella-Menye JR; Galvan DD; Bai T; Hung HC; Chou YN; Zhang P; Jiang S; Yu Q
    ACS Nano; 2015 Mar; 9(3):2668-76. PubMed ID: 25738888
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Urchin-like LaVO₄/Au composite microspheres for surface-enhanced Raman scattering detection.
    Chen L; Wu M; Xiao C; Yu Y; Liu X; Qiu G
    J Colloid Interface Sci; 2015 Apr; 443():80-7. PubMed ID: 25540824
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plasmonic band gap structures for surface-enhanced Raman scattering.
    Kocabas A; Ertas G; Senlik SS; Aydinli A
    Opt Express; 2008 Aug; 16(17):12469-77. PubMed ID: 18711483
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrathin Molybdenum Dioxide Nanosheets as Uniform and Reusable Surface-Enhanced Raman Spectroscopy Substrates with High Sensitivity.
    Wu H; Zhou X; Li J; Li X; Li B; Fei W; Zhou J; Yin J; Guo W
    Small; 2018 Sep; 14(37):e1802276. PubMed ID: 30117267
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plasmonic MoO
    Chen J; Sun K; Zhang Y; Wu D; Jin Z; Xie F; Zhao X; Wang X
    Anal Bioanal Chem; 2019 May; 411(13):2781-2791. PubMed ID: 31037369
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication of gold nanoparticle-embedded metal-organic framework for highly sensitive surface-enhanced Raman scattering detection.
    Hu Y; Liao J; Wang D; Li G
    Anal Chem; 2014 Apr; 86(8):3955-63. PubMed ID: 24646316
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evanescent-wave excitation of surface-enhanced Raman scattering substrates by an optical-fiber taper.
    Su L; Lee TH; Elliott SR
    Opt Lett; 2009 Sep; 34(17):2685-7. PubMed ID: 19724532
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Silver deposited polystyrene (PS) microspheres for surface-enhanced Raman spectroscopic-encoding and rapid label-free detection of melamine in milk powder.
    Zhao Y; Luo W; Kanda P; Cheng H; Chen Y; Wang S; Huan S
    Talanta; 2013 Sep; 113():7-13. PubMed ID: 23708616
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.