These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

647 related articles for article (PubMed ID: 34472455)

  • 1. Microglia regulation of synaptic plasticity and learning and memory.
    Cornell J; Salinas S; Huang HY; Zhou M
    Neural Regen Res; 2022 Apr; 17(4):705-716. PubMed ID: 34472455
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microglia: a new frontier for synaptic plasticity, learning and memory, and neurodegenerative disease research.
    Morris GP; Clark IA; Zinn R; Vissel B
    Neurobiol Learn Mem; 2013 Oct; 105():40-53. PubMed ID: 23850597
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Immune proteins C1q and CD47 may contribute to aberrant microglia-mediated synapse loss in the aging monkey brain that is associated with cognitive impairment.
    DeVries SA; Conner B; Dimovasili C; Moore TL; Medalla M; Mortazavi F; Rosene DL
    Geroscience; 2024 Apr; 46(2):2503-2519. PubMed ID: 37989825
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Amygdala microglia modify neuronal plasticity via complement C1q/C3-CR3 signaling and contribute to visceral pain in a rat model.
    Yuan T; Orock A; Greenwood-Van Meerveld B
    Am J Physiol Gastrointest Liver Physiol; 2021 Jun; 320(6):G1081-G1092. PubMed ID: 33949202
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dysregulated C1q and CD47 in the aging monkey brain: association with myelin damage, microglia reactivity, and cognitive decline.
    DeVries SA; Dimovasili C; Medalla M; Moore TL; Rosene DL
    Front Immunol; 2024; 15():1426975. PubMed ID: 39399501
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Traumatic Brain Injury in Aged Mice Induces Chronic Microglia Activation, Synapse Loss, and Complement-Dependent Memory Deficits.
    Krukowski K; Chou A; Feng X; Tiret B; Paladini MS; Riparip LK; Chaumeil MM; Lemere C; Rosi S
    Int J Mol Sci; 2018 Nov; 19(12):. PubMed ID: 30486287
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of intrinsic excitability: Roles for learning and memory, aging and Alzheimer's disease, and genetic diversity.
    Dunn AR; Kaczorowski CC
    Neurobiol Learn Mem; 2019 Oct; 164():107069. PubMed ID: 31442579
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synaptic Pruning by Microglia: Lessons from Genetic Studies in Mice.
    de Deus JL; Faborode OS; Nandi S
    Dev Neurosci; 2024 Sep; ():1-21. PubMed ID: 39265565
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Synaptic plasticity and synaptic reorganization regulated by microglia].
    Hayashi Y; Nakanishi H
    Nihon Shinkei Seishin Yakurigaku Zasshi; 2013 Nov; 33(5-6):211-6. PubMed ID: 25069260
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dysfunctional synaptic pruning by microglia correlates with cognitive impairment in sleep-deprived mice: Involvement of CX3CR1 signaling.
    Wang L; Ling H; He H; Hu N; Xiao L; Zhang Y; Xie L; You Z
    Neurobiol Stress; 2023 Jul; 25():100553. PubMed ID: 37547773
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anomalous Levels of CD47/Signal Regulatory Protein Alpha in the Hippocampus Lead to Excess Microglial Engulfment in Mouse Model of Perioperative Neurocognitive Disorders.
    Shui M; Sun Y; Lin D; Xue Z; Liu J; Wu A; Wei C
    Front Neurosci; 2022; 16():788675. PubMed ID: 35360151
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Immune dysregulation and cognitive vulnerability in the aging brain: Interactions of microglia, IL-1β, BDNF and synaptic plasticity.
    Patterson SL
    Neuropharmacology; 2015 Sep; 96(Pt A):11-8. PubMed ID: 25549562
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adult Neurogenesis, Learning and Memory.
    Šimončičová E; Henderson Pekarik K; Vecchiarelli HA; Lauro C; Maggi L; Tremblay MÈ
    Adv Neurobiol; 2024; 37():221-242. PubMed ID: 39207695
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microglia during development and aging.
    Harry GJ
    Pharmacol Ther; 2013 Sep; 139(3):313-26. PubMed ID: 23644076
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Strategies to dissect microglia-synaptic interactions during aging and in Alzheimer's disease.
    Heuer SE; Bloss EB; Howell GR
    Neuropharmacology; 2024 Aug; 254():109987. PubMed ID: 38705570
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gut dysbiosis induces the development of depression-like behavior through abnormal synapse pruning in microglia-mediated by complement C3.
    Hao W; Ma Q; Wang L; Yuan N; Gan H; He L; Li X; Huang J; Chen J
    Microbiome; 2024 Feb; 12(1):34. PubMed ID: 38378622
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microglia: Dynamic Mediators of Synapse Development and Plasticity.
    Wu Y; Dissing-Olesen L; MacVicar BA; Stevens B
    Trends Immunol; 2015 Oct; 36(10):605-613. PubMed ID: 26431938
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synaptic elimination by microglia and disturbed higher brain functions.
    Miyanishi K; Sato A; Kihara N; Utsunomiya R; Tanaka J
    Neurochem Int; 2021 Jan; 142():104901. PubMed ID: 33181238
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Role of Complement in Synaptic Pruning and Neurodegeneration.
    Gomez-Arboledas A; Acharya MM; Tenner AJ
    Immunotargets Ther; 2021; 10():373-386. PubMed ID: 34595138
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 33.