These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
370 related articles for article (PubMed ID: 34472865)
1. Extensive and Accurate Benchmarking of DIA Acquisition Methods and Software Tools Using a Complex Proteomic Standard. Gotti C; Roux-Dalvai F; Joly-Beauparlant C; Mangnier L; Leclercq M; Droit A J Proteome Res; 2021 Oct; 20(10):4801-4814. PubMed ID: 34472865 [TBL] [Abstract][Full Text] [Related]
2. DIA proteomics data from a UPS1-spiked Gotti C; Roux-Dalvai F; Joly-Beauparlant C; Mangnier L; Leclercq M; Droit A Data Brief; 2022 Apr; 41():107829. PubMed ID: 35198661 [TBL] [Abstract][Full Text] [Related]
3. Benchmarking quantitative label-free LC-MS data processing workflows using a complex spiked proteomic standard dataset. Ramus C; Hovasse A; Marcellin M; Hesse AM; Mouton-Barbosa E; Bouyssié D; Vaca S; Carapito C; Chaoui K; Bruley C; Garin J; Cianférani S; Ferro M; Van Dorssaeler A; Burlet-Schiltz O; Schaeffer C; Couté Y; Gonzalez de Peredo A J Proteomics; 2016 Jan; 132():51-62. PubMed ID: 26585461 [TBL] [Abstract][Full Text] [Related]
4. Reproducibility, Specificity and Accuracy of Relative Quantification Using Spectral Library-based Data-independent Acquisition. Barkovits K; Pacharra S; Pfeiffer K; Steinbach S; Eisenacher M; Marcus K; Uszkoreit J Mol Cell Proteomics; 2020 Jan; 19(1):181-197. PubMed ID: 31699904 [TBL] [Abstract][Full Text] [Related]
5. Data Processing and Analysis for DIA-Based Phosphoproteomics Using Spectronaut. Martinez-Val A; Bekker-Jensen DB; Hogrebe A; Olsen JV Methods Mol Biol; 2021; 2361():95-107. PubMed ID: 34236657 [TBL] [Abstract][Full Text] [Related]
6. Benchmarking commonly used software suites and analysis workflows for DIA proteomics and phosphoproteomics. Lou R; Cao Y; Li S; Lang X; Li Y; Zhang Y; Shui W Nat Commun; 2023 Jan; 14(1):94. PubMed ID: 36609502 [TBL] [Abstract][Full Text] [Related]
7. Data-Independent Acquisition Mass Spectrometry-Based Proteomics and Software Tools: A Glimpse in 2020. Zhang F; Ge W; Ruan G; Cai X; Guo T Proteomics; 2020 Sep; 20(17-18):e1900276. PubMed ID: 32275110 [TBL] [Abstract][Full Text] [Related]
8. Benchmarking Bioinformatics Pipelines in Data-Independent Acquisition Mass Spectrometry for Immunopeptidomics. Shahbazy M; Ramarathinam SH; Illing PT; Jappe EC; Faridi P; Croft NP; Purcell AW Mol Cell Proteomics; 2023 Apr; 22(4):100515. PubMed ID: 36796644 [TBL] [Abstract][Full Text] [Related]
9. Benefit of In Silico Predicted Spectral Libraries in Data-Independent Acquisition Data Analysis Workflows. Staes A; Mendes Maia T; Dufour S; Bouwmeester R; Gabriels R; Martens L; Gevaert K; Impens F; Devos S J Proteome Res; 2024 Jun; 23(6):2078-2089. PubMed ID: 38666436 [TBL] [Abstract][Full Text] [Related]
10. Optimization of Acquisition and Data-Processing Parameters for Improved Proteomic Quantification by Sequential Window Acquisition of All Theoretical Fragment Ion Mass Spectrometry. Li S; Cao Q; Xiao W; Guo Y; Yang Y; Duan X; Shui W J Proteome Res; 2017 Feb; 16(2):738-747. PubMed ID: 27995803 [TBL] [Abstract][Full Text] [Related]
12. Analysis of DIA proteomics data using MSFragger-DIA and FragPipe computational platform. Yu F; Teo GC; Kong AT; Fröhlich K; Li GX; Demichev V; Nesvizhskii AI Nat Commun; 2023 Jul; 14(1):4154. PubMed ID: 37438352 [TBL] [Abstract][Full Text] [Related]
13. A Comparative Analysis of Data Analysis Tools for Data-Independent Acquisition Mass Spectrometry. Zhang F; Ge W; Huang L; Li D; Liu L; Dong Z; Xu L; Ding X; Zhang C; Sun Y; A J; Gao J; Guo T Mol Cell Proteomics; 2023 Sep; 22(9):100623. PubMed ID: 37481071 [TBL] [Abstract][Full Text] [Related]
14. Multispecies Benchmark Analysis for LC-MS/MS Validation and Performance Evaluation in Bottom-Up Proteomics. Jumel T; Shevchenko A J Proteome Res; 2024 Feb; 23(2):684-691. PubMed ID: 38243904 [TBL] [Abstract][Full Text] [Related]
15. Optimization of Data-Independent Acquisition Mass Spectrometry for Deep and Highly Sensitive Proteomic Analysis. Kawashima Y; Watanabe E; Umeyama T; Nakajima D; Hattori M; Honda K; Ohara O Int J Mol Sci; 2019 Nov; 20(23):. PubMed ID: 31779068 [TBL] [Abstract][Full Text] [Related]
16. A New Evaluation Metric for Quantitative Accuracy of LC-MS/MS-Based Proteomics with Data-Independent Acquisition. Shi M; Huang C; Chen R; Chen DDY; Yan B J Proteome Res; 2024 Sep; 23(9):3780-3790. PubMed ID: 39193824 [TBL] [Abstract][Full Text] [Related]
17. Protein Contaminants Matter: Building Universal Protein Contaminant Libraries for DDA and DIA Proteomics. Frankenfield AM; Ni J; Ahmed M; Hao L J Proteome Res; 2022 Sep; 21(9):2104-2113. PubMed ID: 35793413 [TBL] [Abstract][Full Text] [Related]
18. Acquisition and Analysis of DIA-Based Proteomic Data: A Comprehensive Survey in 2023. Lou R; Shui W Mol Cell Proteomics; 2024 Feb; 23(2):100712. PubMed ID: 38182042 [TBL] [Abstract][Full Text] [Related]