These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 34473056)

  • 1. Muscle-specific economy of force generation and efficiency of work production during human running.
    Bohm S; Mersmann F; Santuz A; Schroll A; Arampatzis A
    Elife; 2021 Sep; 10():. PubMed ID: 34473056
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Operating length and velocity of human vastus lateralis muscle during walking and running.
    Bohm S; Marzilger R; Mersmann F; Santuz A; Arampatzis A
    Sci Rep; 2018 Mar; 8(1):5066. PubMed ID: 29567999
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vivo behavior of the human soleus muscle with increasing walking and running speeds.
    Lai A; Lichtwark GA; Schache AG; Lin YC; Brown NA; Pandy MG
    J Appl Physiol (1985); 2015 May; 118(10):1266-75. PubMed ID: 25814636
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The force-length-velocity potential of the human soleus muscle is related to the energetic cost of running.
    Bohm S; Mersmann F; Santuz A; Arampatzis A
    Proc Biol Sci; 2019 Dec; 286(1917):20192560. PubMed ID: 31847774
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Speed-specific optimal contractile conditions of the human soleus muscle from slow to maximum running speed.
    Bohm S; Mersmann F; Schroll A; Arampatzis A
    J Exp Biol; 2023 Nov; 226(22):. PubMed ID: 37901934
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gastrocnemius Medialis and Vastus Lateralis in vivo muscle-tendon behavior during running at increasing speeds.
    Monte A; Baltzopoulos V; Maganaris CN; Zamparo P
    Scand J Med Sci Sports; 2020 Jul; 30(7):1163-1176. PubMed ID: 32227378
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enthalpy efficiency of the soleus muscle contributes to improvements in running economy.
    Bohm S; Mersmann F; Santuz A; Arampatzis A
    Proc Biol Sci; 2021 Jan; 288(1943):20202784. PubMed ID: 33499791
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vivo muscle function vs speed. I. Muscle strain in relation to length change of the muscle-tendon unit.
    Hoyt DF; Wickler SJ; Biewener AA; Cogger EA; De La Paz KL
    J Exp Biol; 2005 Mar; 208(Pt 6):1175-90. PubMed ID: 15767316
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Muscle fascicle shortening behaviour of vastus lateralis during a maximal force-velocity test.
    Hauraix H; Dorel S; Rabita G; Guilhem G; Nordez A
    Eur J Appl Physiol; 2017 Feb; 117(2):289-299. PubMed ID: 28044199
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vivo vastus lateralis force-velocity relationship at the fascicle and muscle tendon unit level.
    Fontana Hde B; Roesler H; Herzog W
    J Electromyogr Kinesiol; 2014 Dec; 24(6):934-40. PubMed ID: 25130178
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimal muscle fascicle length and tendon stiffness for maximising gastrocnemius efficiency during human walking and running.
    Lichtwark GA; Wilson AM
    J Theor Biol; 2008 Jun; 252(4):662-73. PubMed ID: 18374362
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stretching Your Energetic Budget: How Tendon Compliance Affects the Metabolic Cost of Running.
    Uchida TK; Hicks JL; Dembia CL; Delp SL
    PLoS One; 2016; 11(3):e0150378. PubMed ID: 26930416
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differences in in vivo muscle fascicle and tendinous tissue behavior between the ankle plantarflexors during running.
    Lai AKM; Lichtwark GA; Schache AG; Pandy MG
    Scand J Med Sci Sports; 2018 Jul; 28(7):1828-1836. PubMed ID: 29603434
    [TBL] [Abstract][Full Text] [Related]  

  • 14. History-dependence of muscle slack length following contraction and stretch in the human vastus lateralis.
    Stubbs PW; Walsh LD; D'Souza A; Héroux ME; Bolsterlee B; Gandevia SC; Herbert RD
    J Physiol; 2018 Jun; 596(11):2121-2129. PubMed ID: 29604053
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tendon elastic strain energy in the human ankle plantar-flexors and its role with increased running speed.
    Lai A; Schache AG; Lin YC; Pandy MG
    J Exp Biol; 2014 Sep; 217(Pt 17):3159-68. PubMed ID: 24948642
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of muscle-tendon unit vs. fascicle analyses on vastus lateralis force-generating capacity during constant power output cycling with variable cadence.
    Brennan SF; Cresswell AG; Farris DJ; Lichtwark GA
    J Appl Physiol (1985); 2018 Apr; 124(4):993-1002. PubMed ID: 29357487
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interactions between fascicles and tendinous tissues in gastrocnemius medialis and vastus lateralis during drop landing.
    Hollville E; Nordez A; Guilhem G; Lecompte J; Rabita G
    Scand J Med Sci Sports; 2019 Jan; 29(1):55-70. PubMed ID: 30242912
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The energetic benefits of tendon springs in running: is the reduction of muscle work important?
    Holt NC; Roberts TJ; Askew GN
    J Exp Biol; 2014 Dec; 217(Pt 24):4365-71. PubMed ID: 25394624
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Muscle - tendon unit mechanical and morphological properties and sprint performance.
    Stafilidis S; Arampatzis A
    J Sports Sci; 2007 Jul; 25(9):1035-46. PubMed ID: 17497405
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Muscle fascicle and series elastic element length changes along the length of the human gastrocnemius during walking and running.
    Lichtwark GA; Bougoulias K; Wilson AM
    J Biomech; 2007; 40(1):157-64. PubMed ID: 16364330
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.