These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 34473084)

  • 1. New restraints and validation approaches for nucleic acid structures in PDB-REDO.
    de Vries I; Kwakman T; Lu XJ; Hekkelman ML; Deshpande M; Velankar S; Perrakis A; Joosten RP
    Acta Crystallogr D Struct Biol; 2021 Sep; 77(Pt 9):1127-1141. PubMed ID: 34473084
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Homology-based hydrogen bond information improves crystallographic structures in the PDB.
    van Beusekom B; Touw WG; Tatineni M; Somani S; Rajagopal G; Luo J; Gilliland GL; Perrakis A; Joosten RP
    Protein Sci; 2018 Mar; 27(3):798-808. PubMed ID: 29168245
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DSSR-enabled innovative schematics of 3D nucleic acid structures with PyMOL.
    Lu XJ
    Nucleic Acids Res; 2020 Jul; 48(13):e74. PubMed ID: 32442277
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ideal bond lengths and angles in nucleic acid structures: an update for the 2020s.
    Howard AJ
    Acta Crystallogr B Struct Sci Cryst Eng Mater; 2019 Apr; 75(Pt 2):115-116. PubMed ID: 32830734
    [No Abstract]   [Full Text] [Related]  

  • 5. PDB_REDO: constructive validation, more than just looking for errors.
    Joosten RP; Joosten K; Murshudov GN; Perrakis A
    Acta Crystallogr D Biol Crystallogr; 2012 Apr; 68(Pt 4):484-96. PubMed ID: 22505269
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The PDB_REDO server for macromolecular structure model optimization.
    Joosten RP; Long F; Murshudov GN; Perrakis A
    IUCrJ; 2014 Jul; 1(Pt 4):213-20. PubMed ID: 25075342
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automatic rebuilding and optimization of crystallographic structures in the Protein Data Bank.
    Joosten RP; Joosten K; Cohen SX; Vriend G; Perrakis A
    Bioinformatics; 2011 Dec; 27(24):3392-8. PubMed ID: 22034521
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Motifs in nucleic acids: molecular mechanics restraints for base pairing and base stacking.
    Harvey SC; Wang C; Teletchea S; Lavery R
    J Comput Chem; 2003 Jan; 24(1):1-9. PubMed ID: 12483670
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MolProbity: all-atom contacts and structure validation for proteins and nucleic acids.
    Davis IW; Leaver-Fay A; Chen VB; Block JN; Kapral GJ; Wang X; Murray LW; Arendall WB; Snoeyink J; Richardson JS; Richardson DC
    Nucleic Acids Res; 2007 Jul; 35(Web Server issue):W375-83. PubMed ID: 17452350
    [TBL] [Abstract][Full Text] [Related]  

  • 10. RNAHelix: computational modeling of nucleic acid structures with Watson-Crick and non-canonical base pairs.
    Bhattacharyya D; Halder S; Basu S; Mukherjee D; Kumar P; Bansal M
    J Comput Aided Mol Des; 2017 Feb; 31(2):219-235. PubMed ID: 28102461
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative analysis of nucleic acid three-dimensional structures.
    Gendron P; Lemieux S; Major F
    J Mol Biol; 2001 May; 308(5):919-36. PubMed ID: 11352582
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Revisiting the effects of sequence and structure on the hydrogen bonding and π-stacking interactions in nucleic acids.
    Kamya PR; Muchall HM
    J Phys Chem A; 2011 Nov; 115(45):12800-8. PubMed ID: 21721560
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New Biological Insights from Better Structure Models.
    Touw WG; Joosten RP; Vriend G
    J Mol Biol; 2016 Mar; 428(6):1375-1393. PubMed ID: 26869101
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 3DNA: a software package for the analysis, rebuilding and visualization of three-dimensional nucleic acid structures.
    Lu XJ; Olson WK
    Nucleic Acids Res; 2003 Sep; 31(17):5108-21. PubMed ID: 12930962
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accurate geometrical restraints for Watson-Crick base pairs.
    Gilski M; Zhao J; Kowiel M; Brzezinski D; Turner DH; Jaskolski M
    Acta Crystallogr B Struct Sci Cryst Eng Mater; 2019 Apr; 75(Pt 2):235-245. PubMed ID: 32830749
    [TBL] [Abstract][Full Text] [Related]  

  • 16. QRNAS: software tool for refinement of nucleic acid structures.
    Stasiewicz J; Mukherjee S; Nithin C; Bujnicki JM
    BMC Struct Biol; 2019 Mar; 19(1):5. PubMed ID: 30898165
    [TBL] [Abstract][Full Text] [Related]  

  • 17. PDB_REDO: automated re-refinement of X-ray structure models in the PDB.
    Joosten RP; Salzemann J; Bloch V; Stockinger H; Berglund AC; Blanchet C; Bongcam-Rudloff E; Combet C; Da Costa AL; Deleage G; Diarena M; Fabbretti R; Fettahi G; Flegel V; Gisel A; Kasam V; Kervinen T; Korpelainen E; Mattila K; Pagni M; Reichstadt M; Breton V; Tickle IJ; Vriend G
    J Appl Crystallogr; 2009 Jun; 42(Pt 3):376-384. PubMed ID: 22477769
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling nucleic acids.
    Sim AY; Minary P; Levitt M
    Curr Opin Struct Biol; 2012 Jun; 22(3):273-8. PubMed ID: 22538125
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Watson-Crick versus Hoogsteen Base Pairs: Chemical Strategy to Encode and Express Genetic Information in Life.
    Takahashi S; Sugimoto N
    Acc Chem Res; 2021 May; 54(9):2110-2120. PubMed ID: 33591181
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural alphabets for conformational analysis of nucleic acids available at dnatco.datmos.org.
    Černý J; Božíková P; Malý M; Tykač M; Biedermannová L; Schneider B
    Acta Crystallogr D Struct Biol; 2020 Sep; 76(Pt 9):805-813. PubMed ID: 32876056
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.