These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 34473109)

  • 1. Novel combined crystallization plate for high-throughput crystal screening and in situ data collection at a crystallography beamline.
    Liang M; Yu L; Wang Z; Zhou H; Zhang Y; Wang Q; He J
    Acta Crystallogr F Struct Biol Commun; 2021 Sep; 77(Pt 9):319-327. PubMed ID: 34473109
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CrystalDirect: a new method for automated crystal harvesting based on laser-induced photoablation of thin films.
    Cipriani F; Röwer M; Landret C; Zander U; Felisaz F; Márquez JA
    Acta Crystallogr D Biol Crystallogr; 2012 Oct; 68(Pt 10):1393-9. PubMed ID: 22993093
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Using high-throughput in situ plate screening to evaluate the effect of dehydration on protein crystals.
    Douangamath A; Aller P; Lukacik P; Sanchez-Weatherby J; Moraes I; Brandao-Neto J
    Acta Crystallogr D Biol Crystallogr; 2013 May; 69(Pt 5):920-3. PubMed ID: 23633603
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-throughput in situ X-ray screening of and data collection from protein crystals at room temperature and under cryogenic conditions.
    Broecker J; Morizumi T; Ou WL; Klingel V; Kuo A; Kissick DJ; Ishchenko A; Lee MY; Xu S; Makarov O; Cherezov V; Ogata CM; Ernst OP
    Nat Protoc; 2018 Feb; 13(2):260-292. PubMed ID: 29300389
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Room-temperature serial crystallography at synchrotron X-ray sources using slowly flowing free-standing high-viscosity microstreams.
    Botha S; Nass K; Barends TR; Kabsch W; Latz B; Dworkowski F; Foucar L; Panepucci E; Wang M; Shoeman RL; Schlichting I; Doak RB
    Acta Crystallogr D Biol Crystallogr; 2015 Feb; 71(Pt 2):387-97. PubMed ID: 25664750
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Using sound pulses to solve the crystal-harvesting bottleneck.
    Samara YN; Brennan HM; McCarthy L; Bollard MT; Laspina D; Wlodek JM; Campos SL; Natarajan R; Gofron K; McSweeney S; Soares AS; Leroy L
    Acta Crystallogr D Struct Biol; 2018 Oct; 74(Pt 10):986-999. PubMed ID: 30289409
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In situ crystal data-collection and ligand-screening system at SPring-8.
    Okumura H; Sakai N; Murakami H; Mizuno N; Nakamura Y; Ueno G; Masunaga T; Kawamura T; Baba S; Hasegawa K; Yamamoto M; Kumasaka T
    Acta Crystallogr F Struct Biol Commun; 2022 Jun; 78(Pt 6):241-251. PubMed ID: 35647681
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combining 'dry' co-crystallization and in situ diffraction to facilitate ligand screening by X-ray crystallography.
    Gelin M; Delfosse V; Allemand F; Hoh F; Sallaz-Damaz Y; Pirocchi M; Bourguet W; Ferrer JL; Labesse G; Guichou JF
    Acta Crystallogr D Biol Crystallogr; 2015 Aug; 71(Pt 8):1777-87. PubMed ID: 26249358
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A high-transparency, micro-patternable chip for X-ray diffraction analysis of microcrystals under native growth conditions.
    Murray TD; Lyubimov AY; Ogata CM; Vo H; Uervirojnangkoorn M; Brunger AT; Berger JM
    Acta Crystallogr D Biol Crystallogr; 2015 Oct; 71(Pt 10):1987-97. PubMed ID: 26457423
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Solvent minimization induces preferential orientation and crystal clustering in serial micro-crystallography on micro-meshes, in situ plates and on a movable crystal conveyor belt.
    Soares AS; Mullen JD; Parekh RM; McCarthy GS; Roessler CG; Jackimowicz R; Skinner JM; Orville AM; Allaire M; Sweet RM
    J Synchrotron Radiat; 2014 Nov; 21(Pt 6):1231-9. PubMed ID: 25343789
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A microfluidic device for both on-chip dialysis protein crystallization and in situ X-ray diffraction.
    Junius N; Jaho S; Sallaz-Damaz Y; Borel F; Salmon JB; Budayova-Spano M
    Lab Chip; 2020 Jan; 20(2):296-310. PubMed ID: 31804643
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In situ macromolecular crystallography using microbeams.
    Axford D; Owen RL; Aishima J; Foadi J; Morgan AW; Robinson JI; Nettleship JE; Owens RJ; Moraes I; Fry EE; Grimes JM; Harlos K; Kotecha A; Ren J; Sutton G; Walter TS; Stuart DI; Evans G
    Acta Crystallogr D Biol Crystallogr; 2012 May; 68(Pt 5):592-600. PubMed ID: 22525757
    [TBL] [Abstract][Full Text] [Related]  

  • 13. REACH: Robotic Equipment for Automated Crystal Harvesting using a six-axis robot arm and a micro-gripper.
    Heidari Khajepour MY; Vernede X; Cobessi D; Lebrette H; Rogues P; Terrien M; Berzin C; Ferrer JL
    Acta Crystallogr D Biol Crystallogr; 2013 Mar; 69(Pt 3):381-7. PubMed ID: 23519413
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integrated sample-handling and mounting system for fixed-target serial synchrotron crystallography.
    Illava G; Jayne R; Finke AD; Closs D; Zeng W; Milano SK; Huang Q; Kriksunov I; Sidorenko P; Wise FW; Zipfel WR; Apker BA; Thorne RE
    Acta Crystallogr D Struct Biol; 2021 May; 77(Pt 5):628-644. PubMed ID: 33950019
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Resolving polymorphs and radiation-driven effects in microcrystals using fixed-target serial synchrotron crystallography.
    Ebrahim A; Appleby MV; Axford D; Beale J; Moreno-Chicano T; Sherrell DA; Strange RW; Hough MA; Owen RL
    Acta Crystallogr D Struct Biol; 2019 Feb; 75(Pt 2):151-159. PubMed ID: 30821704
    [TBL] [Abstract][Full Text] [Related]  

  • 16. X-CHIP: an integrated platform for high-throughput protein crystallization and on-the-chip X-ray diffraction data collection.
    Kisselman G; Qiu W; Romanov V; Thompson CM; Lam R; Battaile KP; Pai EF; Chirgadze NY
    Acta Crystallogr D Biol Crystallogr; 2011 Jun; 67(Pt 6):533-9. PubMed ID: 21636893
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MASSIF-1: a beamline dedicated to the fully automatic characterization and data collection from crystals of biological macromolecules.
    Bowler MW; Nurizzo D; Barrett R; Beteva A; Bodin M; Caserotto H; Delagenière S; Dobias F; Flot D; Giraud T; Guichard N; Guijarro M; Lentini M; Leonard GA; McSweeney S; Oskarsson M; Schmidt W; Snigirev A; von Stetten D; Surr J; Svensson O; Theveneau P; Mueller-Dieckmann C
    J Synchrotron Radiat; 2015 Nov; 22(6):1540-7. PubMed ID: 26524320
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microcrystal manipulation with laser tweezers.
    Wagner A; Duman R; Stevens B; Ward A
    Acta Crystallogr D Biol Crystallogr; 2013 Jul; 69(Pt 7):1297-302. PubMed ID: 23793156
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microfluidic Chips for In Situ Crystal X-ray Diffraction and In Situ Dynamic Light Scattering for Serial Crystallography.
    Gicquel Y; Schubert R; Kapis S; Bourenkov G; Schneider T; Perbandt M; Betzel C; Chapman HN; Heymann M
    J Vis Exp; 2018 Apr; (134):. PubMed ID: 29757285
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In Meso In Situ Serial X-Ray Crystallography (IMISX): A Protocol for Membrane Protein Structure Determination at the Swiss Light Source.
    Huang CY; Olieric V; Caffrey M; Wang M
    Methods Mol Biol; 2020; 2127():293-319. PubMed ID: 32112330
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.