These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

278 related articles for article (PubMed ID: 34473175)

  • 1. Unveiling the role of surface, size, shape and defects of iron oxide nanoparticles for theranostic applications.
    Cotin G; Blanco-Andujar C; Perton F; Asín L; de la Fuente JM; Reichardt W; Schaffner D; Ngyen DV; Mertz D; Kiefer C; Meyer F; Spassov S; Ersen O; Chatzidakis M; Botton GA; Hénoumont C; Laurent S; Greneche JM; Teran FJ; Ortega D; Felder-Flesch D; Begin-Colin S
    Nanoscale; 2021 Sep; 13(34):14552-14571. PubMed ID: 34473175
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of the Size and Shape of Dendronized Iron Oxide Nanoparticles Bearing a Targeting Ligand on MRI, Magnetic Hyperthermia, and Photothermia Properties-From Suspension to In Vitro Studies.
    Freis B; Ramirez MLA; Kiefer C; Harlepp S; Iacovita C; Henoumont C; Affolter-Zbaraszczuk C; Meyer F; Mertz D; Boos A; Tasso M; Furgiuele S; Journe F; Saussez S; Bégin-Colin S; Laurent S
    Pharmaceutics; 2023 Mar; 15(4):. PubMed ID: 37111590
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Shape-, size- and structure-controlled synthesis and biocompatibility of iron oxide nanoparticles for magnetic theranostics.
    Xie W; Guo Z; Gao F; Gao Q; Wang D; Liaw BS; Cai Q; Sun X; Wang X; Zhao L
    Theranostics; 2018; 8(12):3284-3307. PubMed ID: 29930730
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multitherapy magnetic theranostic: Synthesis, characterization and in vitro evaluation of their performance.
    Montiel Schneider MG; Favatela MF; Muñoz Medina GA; Fernandez van Raap MB; Lassalle VL
    Colloids Surf B Biointerfaces; 2021 Feb; 198():111460. PubMed ID: 33246780
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gold-coated magnetic nanoparticle as a nanotheranostic agent for magnetic resonance imaging and photothermal therapy of cancer.
    Eyvazzadeh N; Shakeri-Zadeh A; Fekrazad R; Amini E; Ghaznavi H; Kamran Kamrava S
    Lasers Med Sci; 2017 Sep; 32(7):1469-1477. PubMed ID: 28674789
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineered Theranostic Magnetic Nanostructures: Role of Composition and Surface Coating on Magnetic Resonance Imaging Contrast and Thermal Activation.
    Nandwana V; Ryoo SR; Kanthala S; De M; Chou SS; Prasad PV; Dravid VP
    ACS Appl Mater Interfaces; 2016 Mar; 8(11):6953-61. PubMed ID: 26936392
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimization of magnetic nanoparticles for engineering erythrocytes as theranostic agents.
    Slavu LM; Antonelli A; Scarpa ES; Abdalla P; Wilhelm C; Silvestri N; Pellegrino T; Scheffler K; Magnani M; Rinaldi R; Di Corato R
    Biomater Sci; 2023 May; 11(9):3252-3268. PubMed ID: 36939172
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Colloidal polymer-coated Zn-doped iron oxide nanoparticles with high relaxivity and specific absorption rate for efficient magnetic resonance imaging and magnetic hyperthermia.
    Das P; Salvioni L; Malatesta M; Vurro F; Mannucci S; Gerosa M; Antonietta Rizzuto M; Tullio C; Degrassi A; Colombo M; Ferretti AM; Ponti A; Calderan L; Prosperi D
    J Colloid Interface Sci; 2020 Nov; 579():186-194. PubMed ID: 32590159
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Defects or no defects? Or how to design 20-25 nm spherical iron oxide nanoparticles to harness both magnetic hyperthermia and photothermia.
    Freis B; Kiefer C; Ramirez MLA; Harlepp S; Mertz D; Pichon B; Iacovita C; Laurent S; Begin S
    Nanoscale; 2024 Nov; 16(44):20542-20555. PubMed ID: 39422589
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rice starch coated iron oxide nanoparticles: A theranostic probe for photoacoustic imaging-guided photothermal cancer therapy.
    Vo TMT; Mondal S; Nguyen VT; Park S; Choi J; Bui NT; Oh J
    Int J Biol Macromol; 2021 Jul; 183():55-67. PubMed ID: 33857520
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analyzing the mechanisms of iron oxide nanoparticles interactions with cells: A road from failure to success in clinical applications.
    Frtús A; Smolková B; Uzhytchak M; Lunova M; Jirsa M; Kubinová Š; Dejneka A; Lunov O
    J Control Release; 2020 Dec; 328():59-77. PubMed ID: 32860925
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Magnetic nanoparticles for precision oncology: theranostic magnetic iron oxide nanoparticles for image-guided and targeted cancer therapy.
    Zhu L; Zhou Z; Mao H; Yang L
    Nanomedicine (Lond); 2017 Jan; 12(1):73-87. PubMed ID: 27876448
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nickel ferrite nanoparticles for simultaneous use in magnetic resonance imaging and magnetic fluid hyperthermia.
    Umut E; Coşkun M; Pineider F; Berti D; Güngüneş H
    J Colloid Interface Sci; 2019 Aug; 550():199-209. PubMed ID: 31075674
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heparin length in the coating of extremely small iron oxide nanoparticles regulates
    Groult H; Carregal-Romero S; Castejón D; Azkargorta M; Miguel-Coello AB; Pulagam KR; Gómez-Vallejo V; Cousin R; Muñoz-Caffarel M; Lawrie CH; Llop J; Piot JM; Elortza F; Maugard T; Ruiz-Cabello J; Fruitier-Arnaudin I
    Nanoscale; 2021 Jan; 13(2):842-861. PubMed ID: 33351869
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multifunctional Theranostic Nanoparticles Based on Exceedingly Small Magnetic Iron Oxide Nanoparticles for T
    Shen Z; Chen T; Ma X; Ren W; Zhou Z; Zhu G; Zhang A; Liu Y; Song J; Li Z; Ruan H; Fan W; Lin L; Munasinghe J; Chen X; Wu A
    ACS Nano; 2017 Nov; 11(11):10992-11004. PubMed ID: 29039917
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimization and Design of Magnetic Ferrite Nanoparticles with Uniform Tumor Distribution for Highly Sensitive MRI/MPI Performance and Improved Magnetic Hyperthermia Therapy.
    Du Y; Liu X; Liang Q; Liang XJ; Tian J
    Nano Lett; 2019 Jun; 19(6):3618-3626. PubMed ID: 31074627
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of SPION Surface Coating on Magnetic Properties and Theranostic Profile.
    Ferreira-Filho VC; Morais B; Vieira BJC; Waerenborgh JC; Carmezim MJ; Tóth CN; Même S; Lacerda S; Jaque D; Sousa CT; Campello MPC; Pereira LCJ
    Molecules; 2024 Apr; 29(8):. PubMed ID: 38675647
    [TBL] [Abstract][Full Text] [Related]  

  • 18. IGF1 Receptor Targeted Theranostic Nanoparticles for Targeted and Image-Guided Therapy of Pancreatic Cancer.
    Zhou H; Qian W; Uckun FM; Wang L; Wang YA; Chen H; Kooby D; Yu Q; Lipowska M; Staley CA; Mao H; Yang L
    ACS Nano; 2015 Aug; 9(8):7976-91. PubMed ID: 26242412
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent advances in iron oxide nanoparticles for brain cancer theranostics: from
    Sheervalilou R; Shirvaliloo M; Sargazi S; Ghaznavi H
    Expert Opin Drug Deliv; 2021 Jul; 18(7):949-977. PubMed ID: 33567919
    [No Abstract]   [Full Text] [Related]  

  • 20. Size-Controlled Iron Oxide Nanoplatforms with Lipidoid-Stabilized Shells for Efficient Magnetic Resonance Imaging-Trackable Lymph Node Targeting and High-Capacity Biomolecule Display.
    Clauson RM; Chen M; Scheetz LM; Berg B; Chertok B
    ACS Appl Mater Interfaces; 2018 Jun; 10(24):20281-20295. PubMed ID: 29883088
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.