BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 34473182)

  • 1. Arf6-mediated macropinocytosis-enhanced suicide gene therapy of C16TAB-condensed Tat/pDNA nanoparticles in ovarian cancer.
    Sun Z; Huang J; Su L; Li J; Qi F; Su H; Chen Y; Zhang Q; Zhang Q; Li Z; Zhang S
    Nanoscale; 2021 Sep; 13(34):14538-14551. PubMed ID: 34473182
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Macropinocytosis activated by oncogenic Dbl enables specific targeted delivery of Tat/pDNA nano-complexes into ovarian cancer cells.
    Niu X; Gao Z; Qi S; Su L; Yang N; Luan X; Li J; Zhang Q; An Y; Zhang S
    Int J Nanomedicine; 2018; 13():4895-4911. PubMed ID: 30214196
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reversal of P-glycoprotein-mediated multidrug resistance by CD44 antibody-targeted nanocomplexes for short hairpin RNA-encoding plasmid DNA delivery.
    Gu J; Fang X; Hao J; Sha X
    Biomaterials; 2015 Mar; 45():99-114. PubMed ID: 25662500
    [TBL] [Abstract][Full Text] [Related]  

  • 4. TAT modified and lipid - PEI hybrid nanoparticles for co-delivery of docetaxel and pDNA.
    Dong S; Zhou X; Yang J
    Biomed Pharmacother; 2016 Dec; 84():954-961. PubMed ID: 27764758
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development and screening of brain-targeted lipid-based nanoparticles with enhanced cell penetration and gene delivery properties.
    Dos Santos Rodrigues B; Lakkadwala S; Kanekiyo T; Singh J
    Int J Nanomedicine; 2019; 14():6497-6517. PubMed ID: 31616141
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Delivery of pDNA to lung epithelial cells using PLGA nanoparticles formulated with a cell-penetrating peptide: understanding the intracellular fate.
    Gomes Dos Reis L; Lee WH; Svolos M; Moir LM; Jaber R; Engel A; Windhab N; Young PM; Traini D
    Drug Dev Ind Pharm; 2020 Mar; 46(3):427-442. PubMed ID: 32070151
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A co-delivery platform based on plasmid DNA peptide-surfactant complexes: formation, characterization and release behavior.
    Costa D; Albuquerque T; Queiroz JA; Valente AJM
    Colloids Surf B Biointerfaces; 2019 Jun; 178():430-438. PubMed ID: 30908999
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PepFect14 peptide vector for efficient gene delivery in cell cultures.
    Veiman KL; Mäger I; Ezzat K; Margus H; Lehto T; Langel K; Kurrikoff K; Arukuusk P; Suhorutšenko J; Padari K; Pooga M; Lehto T; Langel Ü
    Mol Pharm; 2013 Jan; 10(1):199-210. PubMed ID: 23186360
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Retro-inverso d-peptide-modified hyaluronic acid/bioreducible hyperbranched poly(amido amine)/pDNA core-shell ternary nanoparticles for the dual-targeted delivery of short hairpin RNA-encoding plasmids.
    Gu J; Chen X; Fang X; Sha X
    Acta Biomater; 2017 Jul; 57():156-169. PubMed ID: 28442415
    [TBL] [Abstract][Full Text] [Related]  

  • 10. "Soft" calcium crosslinks enable highly efficient gene transfection using TAT peptide.
    Baoum A; Xie SX; Fakhari A; Berkland C
    Pharm Res; 2009 Dec; 26(12):2619-29. PubMed ID: 19789962
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Suicide gene delivery by morphology-adaptable enantiomeric peptide assemblies for combined ovarian cancer therapy.
    Song N; Sun Z; Wang B; Liu X; Hu B; Chen N; Zhang S; Yu Z
    Acta Biomater; 2024 Feb; 175():250-261. PubMed ID: 38122884
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combination of TAT-HMGB1A and R3V6 amphiphilic peptide for plasmid DNA delivery with anti-inflammatory effect.
    Kim B; Song JH; Lee M
    J Drug Target; 2014 Sep; 22(8):739-47. PubMed ID: 24830301
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro and in vivo gene delivery using chitosan/hyaluronic acid nanoparticles: Influences of molecular mass of hyaluronic acid and lyophilization on transfection efficiency.
    Sato T; Nakata M; Yang Z; Torizuka Y; Kishimoto S; Ishihara M
    J Gene Med; 2017 Aug; 19(8):. PubMed ID: 28667693
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synergistic effects of conjugating cell penetrating peptides and thiomers on non-viral transfection efficiency.
    Rahmat D; Khan MI; Shahnaz G; Sakloetsakun D; Perera G; Bernkop-Schnürch A
    Biomaterials; 2012 Mar; 33(7):2321-6. PubMed ID: 22169137
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combined Local Pulmonary and Systemic Delivery of AT2R Gene by Modified TAT Peptide Nanoparticles Attenuates Both Murine and Human Lung Carcinoma Xenografts in Mice.
    Ishiguro S; Alhakamy NA; Uppalapati D; Delzeit J; Berkland CJ; Tamura M
    J Pharm Sci; 2017 Jan; 106(1):385-394. PubMed ID: 27769520
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Factors influencing the transfection efficiency and cellular uptake mechanisms of Pluronic P123-modified polypropyleneimine/pDNA polyplexes in multidrug resistant breast cancer cells.
    Gu J; Hao J; Fang X; Sha X
    Colloids Surf B Biointerfaces; 2016 Apr; 140():83-93. PubMed ID: 26741268
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cancer gene therapy mediated by RALA/plasmid DNA vectors: Nitrogen to phosphate groups ratio (N/P) as a tool for tunable transfection efficiency and apoptosis.
    Neves AR; Sousa A; Faria R; Albuquerque T; Queiroz JA; Costa D
    Colloids Surf B Biointerfaces; 2020 Jan; 185():110610. PubMed ID: 31711736
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Glutathione-Responsive Multilayer Coated Gold Nanoparticles for Targeted Gene Delivery.
    Yu F; Huang J; Yu Y; Lu Y; Chen Y; Zhang H; Zhou G; Sun Z; Liu J; Sun D; Zhang G; Zou H; Zhong Y
    J Biomed Nanotechnol; 2016 Mar; 12(3):503-15. PubMed ID: 27280248
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Low molecular weight protamine as an efficient and nontoxic gene carrier: in vitro study.
    Park YJ; Liang JF; Ko KS; Kim SW; Yang VC
    J Gene Med; 2003 Aug; 5(8):700-11. PubMed ID: 12898639
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dual-Targeting Nanoparticles for In Vivo Delivery of Suicide Genes to Chemotherapy-Resistant Ovarian Cancer Cells.
    Cocco E; Deng Y; Shapiro EM; Bortolomai I; Lopez S; Lin K; Bellone S; Cui J; Menderes G; Black JD; Schwab CL; Bonazzoli E; Yang F; Predolini F; Zammataro L; Altwerger G; de Haydu C; Clark M; Alvarenga J; Ratner E; Azodi M; Silasi DA; Schwartz PE; Litkouhi B; Saltzman WM; Santin AD
    Mol Cancer Ther; 2017 Feb; 16(2):323-333. PubMed ID: 27956521
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.