These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
187 related articles for article (PubMed ID: 3447347)
21. Visual signals contribute to the coding of gaze direction. Blouin J; Amade N; Vercher JL; Teasdale N; Gauthier GM Exp Brain Res; 2002 Jun; 144(3):281-92. PubMed ID: 12021810 [TBL] [Abstract][Full Text] [Related]
22. Monkey saccadic latency and pursuit velocity show a preference for upward directions of target motion. Schlykowa L; Hoffmann KP; Bremmer F; Thiele A; Ehrenstein WH Neuroreport; 1996 Jan; 7(2):409-12. PubMed ID: 8730793 [TBL] [Abstract][Full Text] [Related]
23. Saccadic reaction time in the monkey: advanced preparation of oculomotor programs is primarily responsible for express saccade occurrence. Paré M; Munoz DP J Neurophysiol; 1996 Dec; 76(6):3666-81. PubMed ID: 8985865 [TBL] [Abstract][Full Text] [Related]
24. Dynamics and efficacy of saccade-facilitated vergence eye movements in monkeys. Maxwell JS; King WM J Neurophysiol; 1992 Oct; 68(4):1248-60. PubMed ID: 1432082 [TBL] [Abstract][Full Text] [Related]
25. Properties of signals that determine the amplitude and direction of saccadic eye movements in monkeys. McKenzie A; Lisberger SG J Neurophysiol; 1986 Jul; 56(1):196-207. PubMed ID: 3746396 [TBL] [Abstract][Full Text] [Related]
31. Predictive elements in ocular interception and tracking of a moving target by untrained cats. Klam F; Petit J; Grantyn A; Berthoz A Exp Brain Res; 2001 Jul; 139(2):233-47. PubMed ID: 11497066 [TBL] [Abstract][Full Text] [Related]
32. The temporal and spatial constraints of saccade planning to double-step target displacements. Kelly S; Zhou W; Bansal S; Peterson MS; Joiner WM Vision Res; 2019 Oct; 163():1-13. PubMed ID: 31404552 [TBL] [Abstract][Full Text] [Related]
33. Corrections in saccade endpoints scale to the amplitude of target displacements in a double-step paradigm. Kiernan D; Manson G; Heath M; Tremblay L; Welsh TN Neurosci Lett; 2016 Jan; 611():46-50. PubMed ID: 26608024 [TBL] [Abstract][Full Text] [Related]
34. How post-saccadic target blanking affects the detection of stimulus displacements across saccades. Irwin DE; Robinson MM Vision Res; 2018 Jan; 142():11-19. PubMed ID: 29129730 [TBL] [Abstract][Full Text] [Related]
35. Primate frontal eye fields. III. Maintenance of a spatially accurate saccade signal. Goldberg ME; Bruce CJ J Neurophysiol; 1990 Aug; 64(2):489-508. PubMed ID: 2213128 [TBL] [Abstract][Full Text] [Related]
36. Activity of neurons in monkey superior colliculus during interrupted saccades. Munoz DP; Waitzman DM; Wurtz RH J Neurophysiol; 1996 Jun; 75(6):2562-80. PubMed ID: 8793764 [TBL] [Abstract][Full Text] [Related]
37. Saccadic gain modification: visual error drives motor adaptation. Wallman J; Fuchs AF J Neurophysiol; 1998 Nov; 80(5):2405-16. PubMed ID: 9819252 [TBL] [Abstract][Full Text] [Related]
38. Dynamics of saccade target selection: race model analysis of double step and search step saccade production in human and macaque. Camalier CR; Gotler A; Murthy A; Thompson KG; Logan GD; Palmeri TJ; Schall JD Vision Res; 2007 Jul; 47(16):2187-211. PubMed ID: 17604806 [TBL] [Abstract][Full Text] [Related]
39. Gaze strategies during linear motion in head-free humans. Borel L; Le Goff B; Charade O; Berthoz A J Neurophysiol; 1994 Nov; 72(5):2451-66. PubMed ID: 7884471 [TBL] [Abstract][Full Text] [Related]
40. Direction-specific and position-specific effects upon detection of displacements during saccadic eye movements. Heywood S; Churcher J Vision Res; 1981; 21(2):255-61. PubMed ID: 7269302 [No Abstract] [Full Text] [Related] [Previous] [Next] [New Search]