BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 34473629)

  • 1. Multi-Objective Neural Evolutionary Algorithm for Combinatorial Optimization Problems.
    Shao Y; Lin JC; Srivastava G; Guo D; Zhang H; Yi H; Jolfaei A
    IEEE Trans Neural Netw Learn Syst; 2023 Apr; 34(4):2133-2143. PubMed ID: 34473629
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A deep reinforcement learning algorithm framework for solving multi-objective traveling salesman problem based on feature transformation.
    Zhao S; Gu S
    Neural Netw; 2024 Aug; 176():106359. PubMed ID: 38733797
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An accelerated end-to-end method for solving routing problems.
    Zhu T; Shi X; Xu X; Cao J
    Neural Netw; 2023 Jul; 164():535-545. PubMed ID: 37216756
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evolutionary optimization framework to train multilayer perceptrons for engineering applications.
    Al-Hajj R; Fouad MM; Zeki M
    Math Biosci Eng; 2024 Jan; 21(2):2970-2990. PubMed ID: 38454715
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deep Reinforcement Learning for Multiobjective Optimization.
    Li K; Zhang T; Wang R
    IEEE Trans Cybern; 2021 Jun; 51(6):3103-3114. PubMed ID: 32191907
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deep Reinforcement Learning for Combinatorial Optimization: Covering Salesman Problems.
    Li K; Zhang T; Wang R; Wang Y; Han Y; Wang L
    IEEE Trans Cybern; 2022 Dec; 52(12):13142-13155. PubMed ID: 34437087
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hybridization of decomposition and local search for multiobjective optimization.
    Ke L; Zhang Q; Battiti R
    IEEE Trans Cybern; 2014 Oct; 44(10):1808-20. PubMed ID: 25222724
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Discrete Fruit Fly Optimization Algorithm for the Traveling Salesman Problem.
    Jiang ZB; Yang Q
    PLoS One; 2016; 11(11):e0165804. PubMed ID: 27812175
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Memory-efficient Transformer-based network model for Traveling Salesman Problem.
    Yang H; Zhao M; Yuan L; Yu Y; Li Z; Gu M
    Neural Netw; 2023 Apr; 161():589-597. PubMed ID: 36822144
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MOEA/D-ACO: a multiobjective evolutionary algorithm using decomposition and AntColony.
    Ke L; Zhang Q; Battiti R
    IEEE Trans Cybern; 2013 Dec; 43(6):1845-59. PubMed ID: 23757576
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic sub-route-based self-adaptive beam search Q-learning algorithm for traveling salesman problem.
    Zhang J; Liu Q; Han X
    PLoS One; 2023; 18(3):e0283207. PubMed ID: 36943840
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Objective space division-based hybrid evolutionary algorithm for handing overlapping solutions in combinatorial problems.
    González B; Rossit DA; Méndez M; Frutos M
    Math Biosci Eng; 2022 Jan; 19(4):3369-3401. PubMed ID: 35341256
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An optimization spiking neural p system for approximately solving combinatorial optimization problems.
    Zhang G; Rong H; Neri F; Pérez-Jiménez MJ
    Int J Neural Syst; 2014 Aug; 24(5):1440006. PubMed ID: 24875789
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solving Traveling Salesman Problems Based on Artificial Cooperative Search Algorithm.
    Liu G; Xu X; Wang F; Tang Y
    Comput Intell Neurosci; 2022; 2022():1008617. PubMed ID: 35463281
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evolutionary algorithms guided by Erdős-Rényi complex networks.
    Bucheli VA; Solarte Pabón O; Ordoñez H
    PeerJ Comput Sci; 2024; 10():e1773. PubMed ID: 38259892
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Collaborative Local Search Based on Dynamic-Constrained Decomposition With Grids for Combinatorial Multiobjective Optimization.
    Cai X; Xia C; Zhang Q; Mei Z; Hu H; Wang L; Hu J
    IEEE Trans Cybern; 2021 May; 51(5):2639-2650. PubMed ID: 31425134
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A deep reinforcement learning algorithm for the rectangular strip packing problem.
    Fang J; Rao Y; Shi M
    PLoS One; 2023; 18(3):e0282598. PubMed ID: 36928505
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Feature-Based Diversity Optimization for Problem Instance Classification.
    Gao W; Nallaperuma S; Neumann F
    Evol Comput; 2021; 29(1):107-128. PubMed ID: 32551995
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Many-objective BAT algorithm.
    Perwaiz U; Younas I; Anwar AA
    PLoS One; 2020; 15(6):e0234625. PubMed ID: 32525939
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An efficient optimizer for the 0/1 knapsack problem using group counseling.
    Ghadi YY; AlShloul T; Nezami ZI; Ali H; Asif M; Aljuaid H; Ahmad S
    PeerJ Comput Sci; 2023; 9():e1315. PubMed ID: 37346609
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.