These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 34473825)

  • 1. Classification of Discrete Dynamical Systems Based on Transients.
    Hudcová B; Mikolov T
    Artif Life; 2021 Sep; ():1-26. PubMed ID: 34473825
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A full computation-relevant topological dynamics classification of elementary cellular automata.
    Schüle M; Stoop R
    Chaos; 2012 Dec; 22(4):043143. PubMed ID: 23278078
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A neuro-inspired general framework for the evolution of stochastic dynamical systems: Cellular automata, random Boolean networks and echo state networks towards criticality.
    Pontes-Filho S; Lind P; Yazidi A; Zhang J; Hammer H; Mello GBM; Sandvig I; Tufte G; Nichele S
    Cogn Neurodyn; 2020 Oct; 14(5):657-674. PubMed ID: 33014179
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational capabilities of random automata networks for reservoir computing.
    Snyder D; Goudarzi A; Teuscher C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Apr; 87(4):042808. PubMed ID: 23679474
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Counting and classifying attractors in high dimensional dynamical systems.
    Bagley RJ; Glass L
    J Theor Biol; 1996 Dec; 183(3):269-84. PubMed ID: 9015450
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lambda and the edge of chaos in recurrent neural networks.
    Seifter J; Reggia JA
    Artif Life; 2015; 21(1):55-71. PubMed ID: 25514434
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Scaling in ordered and critical random boolean networks.
    Socolar JE; Kauffman SA
    Phys Rev Lett; 2003 Feb; 90(6):068702. PubMed ID: 12633339
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamical phase transitions in graph cellular automata.
    Behrens F; Hudcová B; Zdeborová L
    Phys Rev E; 2024 Apr; 109(4-1):044312. PubMed ID: 38755799
    [TBL] [Abstract][Full Text] [Related]  

  • 9. How Chemistry Computes: Language Recognition by Non-Biochemical Chemical Automata. From Finite Automata to Turing Machines.
    Dueñas-Díez M; Pérez-Mercader J
    iScience; 2019 Sep; 19():514-526. PubMed ID: 31442667
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effective connectivity determines the critical dynamics of biochemical networks.
    Manicka S; Marques-Pita M; Rocha LM
    J R Soc Interface; 2022 Jan; 19(186):20210659. PubMed ID: 35042384
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exploring high dimensional data with Butterfly: a novel classification algorithm based on discrete dynamical systems.
    Geraci J; Dharsee M; Nuin P; Haslehurst A; Koti M; Feilotter HE; Evans K
    Bioinformatics; 2014 Mar; 30(5):712-8. PubMed ID: 24149051
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Order-to-chaos transition in the hardness of random Boolean satisfiability problems.
    Varga M; Sumi R; Toroczkai Z; Ercsey-Ravasz M
    Phys Rev E; 2016 May; 93(5):052211. PubMed ID: 27300884
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the Criticality of Adaptive Boolean Network Robots.
    Braccini M; Roli A; Barbieri E; Kauffman SA
    Entropy (Basel); 2022 Sep; 24(10):. PubMed ID: 37420388
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-organisation of living systems towards criticality at the edge of chaos.
    Ito K; Gunji YP
    Biosystems; 1994; 33(1):17-24. PubMed ID: 7803697
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Symmetry structure in discrete models of biochemical systems: natural subsystems and the weak control hierarchy in a new model of computation driven by interactions.
    Nehaniv CL; Rhodes J; Egri-Nagy A; Dini P; Morris ER; Horváth G; Karimi F; Schreckling D; Schilstra MJ
    Philos Trans A Math Phys Eng Sci; 2015 Jul; 373(2046):. PubMed ID: 26078349
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Attractor Stability in Finite Asynchronous Biological System Models.
    Mortveit HS; Pederson RD
    Bull Math Biol; 2019 May; 81(5):1442-1460. PubMed ID: 30656504
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measuring Behavioral Similarity of Cellular Automata.
    Turney PD
    Artif Life; 2021 Jun; 27(1):62-71. PubMed ID: 34529756
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational capabilities at the edge of chaos for one dimensional systems undergoing continuous transitions.
    Estevez-Rams E; Estevez-Moya D; Garcia-Medina K; Lora-Serrano R
    Chaos; 2019 Apr; 29(4):043105. PubMed ID: 31042953
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effective Connectivity and Bias Entropy Improve Prediction of Dynamical Regime in Automata Networks.
    Costa FX; Rozum JC; Marcus AM; Rocha LM
    Entropy (Basel); 2023 Feb; 25(2):. PubMed ID: 36832740
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predictive landscapes hidden beneath biological cellular automata.
    Koopmans L; Youk H
    J Biol Phys; 2021 Dec; 47(4):355-369. PubMed ID: 34739687
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.