These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

311 related articles for article (PubMed ID: 34473895)

  • 1. An updated overview on the regulatory circuits of polyhydroxyalkanoates synthesis.
    Mitra R; Xu T; Chen GQ; Xiang H; Han J
    Microb Biotechnol; 2022 May; 15(5):1446-1470. PubMed ID: 34473895
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A comprehensive overview and recent advances on polyhydroxyalkanoates (PHA) production using various organic waste streams.
    Ganesh Saratale R; Cho SK; Dattatraya Saratale G; Kadam AA; Ghodake GS; Kumar M; Naresh Bharagava R; Kumar G; Su Kim D; Mulla SI; Seung Shin H
    Bioresour Technol; 2021 Apr; 325():124685. PubMed ID: 33508681
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Waste to bioplastics: How close are we to sustainable polyhydroxyalkanoates production?
    Khatami K; Perez-Zabaleta M; Owusu-Agyeman I; Cetecioglu Z
    Waste Manag; 2021 Jan; 119():374-388. PubMed ID: 33139190
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolic circuits and gene regulators in polyhydroxyalkanoate producing organisms: Intervention strategies for enhanced production.
    Sindhu R; Madhavan A; Arun KB; Pugazhendhi A; Reshmy R; Awasthi MK; Sirohi R; Tarafdar A; Pandey A; Binod P
    Bioresour Technol; 2021 May; 327():124791. PubMed ID: 33579565
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Morphology engineering for enhanced production of medium-chain-length polyhydroxyalkanoates in Pseudomonas mendocina NK-01.
    Zhao F; Gong T; Liu X; Fan X; Huang R; Ma T; Wang S; Gao W; Yang C
    Appl Microbiol Biotechnol; 2019 Feb; 103(4):1713-1724. PubMed ID: 30610286
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Production and recovery of polyhydroxyalkanoates (PHA) from waste streams - A review.
    Yukesh Kannah R; Dinesh Kumar M; Kavitha S; Rajesh Banu J; Kumar Tyagi V; Rajaguru P; Kumar G
    Bioresour Technol; 2022 Dec; 366():128203. PubMed ID: 36330969
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sustainable applications of polyhydroxyalkanoates in various fields: A critical review.
    Pandey A; Adama N; Adjallé K; Blais JF
    Int J Biol Macromol; 2022 Nov; 221():1184-1201. PubMed ID: 36113591
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Valorization of polyhydroxyalkanoates production process by co-synthesis of value-added products.
    Kumar P; Kim BS
    Bioresour Technol; 2018 Dec; 269():544-556. PubMed ID: 30201320
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Co-production of microbial polyhydroxyalkanoates with other chemicals.
    Li T; Elhadi D; Chen GQ
    Metab Eng; 2017 Sep; 43(Pt A):29-36. PubMed ID: 28782693
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Screening of endogenous strong promoters for enhanced production of medium-chain-length polyhydroxyalkanoates in Pseudomonas mendocina NK-01.
    Zhao F; Liu X; Kong A; Zhao Y; Fan X; Ma T; Gao W; Wang S; Yang C
    Sci Rep; 2019 Feb; 9(1):1798. PubMed ID: 30755729
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Post-Transcriptional Control in the Regulation of Polyhydroxyalkanoates Synthesis.
    Peregrina A; Martins-Lourenço J; Freitas F; Reis MAM; Arraiano CM
    Life (Basel); 2021 Aug; 11(8):. PubMed ID: 34440597
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bacterial production of the biodegradable plastics polyhydroxyalkanoates.
    Urtuvia V; Villegas P; González M; Seeger M
    Int J Biol Macromol; 2014 Sep; 70():208-13. PubMed ID: 24974981
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polyhydroxyalkanoates, the bioplastics of microbial origin: Properties, biochemical synthesis, and their applications.
    Behera S; Priyadarshanee M; Vandana ; Das S
    Chemosphere; 2022 May; 294():133723. PubMed ID: 35085614
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthetic biology strategies for synthesizing polyhydroxyalkanoates from unrelated carbon sources.
    Agnew DE; Pfleger BF
    Chem Eng Sci; 2013 Nov; 103():58-67. PubMed ID: 36249713
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polyhydroxyalkanoates, challenges and opportunities.
    Wang Y; Yin J; Chen GQ
    Curr Opin Biotechnol; 2014 Dec; 30():59-65. PubMed ID: 24976377
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biological Approaches in Polyhydroxyalkanoates Recovery.
    Gonzalez K; Navia R; Liu S; Cea M
    Curr Microbiol; 2021 Jan; 78(1):1-10. PubMed ID: 33112974
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantification of intracellular polyhydroxyalkanoates by virtue of personalized flow cytometry protocol.
    Saranya V; Poornimakkani ; Krishnakumari MS; Suguna P; Binuramesh C; Abirami P; Rajeswari V; Ramachandran KB; Shenbagarathai R
    Curr Microbiol; 2012 Nov; 65(5):589-94. PubMed ID: 22875103
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biosynthesis of diverse α,ω-diol-derived polyhydroxyalkanoates by engineered Halomonas bluephagenesis.
    Yan X; Liu X; Yu LP; Wu F; Jiang XR; Chen GQ
    Metab Eng; 2022 Jul; 72():275-288. PubMed ID: 35429676
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural Insights into Polyhydroxyalkanoates Biosynthesis.
    Sagong HY; Son HF; Choi SY; Lee SY; Kim KJ
    Trends Biochem Sci; 2018 Oct; 43(10):790-805. PubMed ID: 30139647
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In situ identification of polyhydroxyalkanoate (PHA)-accumulating microorganisms in mixed microbial cultures under feast/famine conditions.
    Sruamsiri D; Thayanukul P; Suwannasilp BB
    Sci Rep; 2020 Feb; 10(1):3752. PubMed ID: 32111932
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.