These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 34474249)
1. Foul sewer model development using geotagged information and smart water meter data. Jia Y; Zheng F; Zhang Q; Duan HF; Savic D; Kapelan Z Water Res; 2021 Oct; 204():117594. PubMed ID: 34474249 [TBL] [Abstract][Full Text] [Related]
2. Real-time foul sewer hydraulic modelling driven by water consumption data from water distribution systems. Zhang Q; Zheng F; Jia Y; Savic D; Kapelan Z Water Res; 2021 Jan; 188():116544. PubMed ID: 33126001 [TBL] [Abstract][Full Text] [Related]
3. Searching for storm water inflows in foul sewers using fibre-optic distributed temperature sensing. Schilperoort R; Hoppe H; de Haan C; Langeveld J Water Sci Technol; 2013; 68(8):1723-30. PubMed ID: 24185052 [TBL] [Abstract][Full Text] [Related]
4. A learning-based approach towards the data-driven predictive control of combined wastewater networks - An experimental study. Balla KM; Bendtsen JD; Schou C; Kallesøe CS; Ocampo-Martinez C Water Res; 2022 Aug; 221():118782. PubMed ID: 35803046 [TBL] [Abstract][Full Text] [Related]
5. An automated toolchain for the data-driven and dynamical modeling of combined sewer systems. Troutman SC; Schambach N; Love NG; Kerkez B Water Res; 2017 Dec; 126():88-100. PubMed ID: 28923407 [TBL] [Abstract][Full Text] [Related]
6. Modeling in-sewer transformations at catchment scale - implications on drug consumption estimates in wastewater-based epidemiology. McCall AK; Palmitessa R; Blumensaat F; Morgenroth E; Ort C Water Res; 2017 Oct; 122():655-668. PubMed ID: 28651217 [TBL] [Abstract][Full Text] [Related]
7. Prediction of remaining life of RCC sewer manhole using smart material-based EMI technique for sustainable environment. Singh SK; Maurya KK; Shanker R; Ranjan A Environ Sci Pollut Res Int; 2023 May; 30(22):61526-61540. PubMed ID: 36282382 [TBL] [Abstract][Full Text] [Related]
8. Analysis of suitable private-secondary-main sewer diameters in rural areas based on cost model and hydraulic calculation. Li W; Zheng T; Ma Y; Liu J J Environ Manage; 2021 Mar; 281():111925. PubMed ID: 33422912 [TBL] [Abstract][Full Text] [Related]
9. Quantification of groundwater infiltration and surface water inflows in urban sewer networks based on a multiple model approach. Karpf C; Krebs P Water Res; 2011 May; 45(10):3129-36. PubMed ID: 21497364 [TBL] [Abstract][Full Text] [Related]
10. The development and application of improved solids modelling to enable resilient urban sewer networks. Murali MK; Hipsey MR; Ghadouani A; Yuan Z J Environ Manage; 2019 Jun; 240():219-230. PubMed ID: 30947090 [TBL] [Abstract][Full Text] [Related]
11. A machine learning approach for predicting and localizing the failure and damage point in sewer networks due to pipe properties. Goodarzi MR; Vazirian M J Water Health; 2024 Mar; 22(3):487-509. PubMed ID: 38557566 [TBL] [Abstract][Full Text] [Related]
12. Dynamic time warping improves sewer flow monitoring. Dürrenmatt DJ; Del Giudice D; Rieckermann J Water Res; 2013 Jul; 47(11):3803-16. PubMed ID: 23664432 [TBL] [Abstract][Full Text] [Related]
13. Pin-pointing groundwater infiltration into urban sewers using chemical tracer in conjunction with physically based optimization model. Zhao Z; Yin H; Xu Z; Peng J; Yu Z Water Res; 2020 May; 175():115689. PubMed ID: 32199188 [TBL] [Abstract][Full Text] [Related]
14. DSM-flux: A new technology for reliable Combined Sewer Overflow discharge monitoring with low uncertainties. Maté Marín A; Rivière N; Lipeme Kouyi G J Environ Manage; 2018 Jun; 215():273-282. PubMed ID: 29574205 [TBL] [Abstract][Full Text] [Related]
15. Potential of supervised machine learning algorithms for estimating the impact of water efficient scenarios on solids accumulation in sewers. Harpaz C; Russo S; Leitão JP; Penn R Water Res; 2022 Jun; 216():118247. PubMed ID: 35344912 [TBL] [Abstract][Full Text] [Related]
16. A stable isotope approach for the quantification of sewer infiltration. Kracht O; Gresch M; Gujert W Environ Sci Technol; 2007 Aug; 41(16):5839-45. PubMed ID: 17874795 [TBL] [Abstract][Full Text] [Related]
17. Placing sensors in sewer networks: A system to pinpoint new cases of coronavirus. Nourinejad M; Berman O; Larson RC PLoS One; 2021; 16(4):e0248893. PubMed ID: 33831024 [TBL] [Abstract][Full Text] [Related]
18. Predicting impacts of water conservation with a stochastic sewer model. Bailey O; Arnot TC; Blokker EJM; Kapelan Z; Hofman JAMH Water Sci Technol; 2019 Dec; 80(11):2148-2157. PubMed ID: 32198332 [TBL] [Abstract][Full Text] [Related]
19. A critical review of wastewater quality variation and in-sewer processes during conveyance in sewer systems. Gao Y; Shi X; Jin X; Wang XC; Jin P Water Res; 2023 Jan; 228(Pt B):119398. PubMed ID: 36436409 [TBL] [Abstract][Full Text] [Related]
20. Effects of sewer conditions on the degradation of selected illicit drug residues in wastewater. Thai PK; Jiang G; Gernjak W; Yuan Z; Lai FY; Mueller JF Water Res; 2014 Jan; 48():538-47. PubMed ID: 24169511 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]