BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 34475280)

  • 1. A SAXS-based approach to rationally evaluate radical scavengers - toward eliminating radiation damage in solution and crystallographic studies.
    Stachowski TR; Snell ME; Snell EH
    J Synchrotron Radiat; 2021 Sep; 28(Pt 5):1309-1320. PubMed ID: 34475280
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SAXS studies of X-ray induced disulfide bond damage: Engineering high-resolution insight from a low-resolution technique.
    Stachowski TR; Snell ME; Snell EH
    PLoS One; 2020; 15(11):e0239702. PubMed ID: 33201877
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Uridine as a new scavenger for synchrotron-based structural biology techniques.
    Crosas E; Castellvi A; Crespo I; Fulla D; Gil-Ortiz F; Fuertes G; Kamma-Lorger CS; Malfois M; Aranda MA; Juanhuix J
    J Synchrotron Radiat; 2017 Jan; 24(Pt 1):53-62. PubMed ID: 28009546
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Room-temperature scavengers for macromolecular crystallography: increased lifetimes and modified dose dependence of the intensity decay.
    Barker AI; Southworth-Davies RJ; Paithankar KS; Carmichael I; Garman EF
    J Synchrotron Radiat; 2009 Mar; 16(Pt 2):205-16. PubMed ID: 19240332
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Can radiation damage to protein crystals be reduced using small-molecule compounds?
    Kmetko J; Warkentin M; Englich U; Thorne RE
    Acta Crystallogr D Biol Crystallogr; 2011 Oct; 67(Pt 10):881-93. PubMed ID: 21931220
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Radiation damage to biological samples: still a pertinent issue.
    Garman EF; Weik M
    J Synchrotron Radiat; 2021 Sep; 28(Pt 5):1278-1283. PubMed ID: 34475277
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Radiation Damage in Macromolecular Crystallography.
    Garman EF; Weik M
    Methods Mol Biol; 2017; 1607():467-489. PubMed ID: 28573586
    [TBL] [Abstract][Full Text] [Related]  

  • 8. X-ray radiation damage to biological macromolecules: further insights.
    Garman EF; Weik M
    J Synchrotron Radiat; 2017 Jan; 24(Pt 1):1-6. PubMed ID: 28009541
    [TBL] [Abstract][Full Text] [Related]  

  • 9. To scavenge or not to scavenge, that is STILL the question.
    Allan EG; Kander MC; Carmichael I; Garman EF
    J Synchrotron Radiat; 2013 Jan; 20(Pt 1):23-36. PubMed ID: 23254653
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improving data quality and expanding BioSAXS experiments to low-molecular-weight and low-concentration protein samples.
    Castellví A; Pascual-Izarra C; Crosas E; Malfois M; Juanhuix J
    Acta Crystallogr D Struct Biol; 2020 Oct; 76(Pt 10):971-981. PubMed ID: 33021499
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Can soaked-in scavengers protect metalloprotein active sites from reduction during data collection?
    Macedo S; Pechlaner M; Schmid W; Weik M; Sato K; Dennison C; Djinović-Carugo K
    J Synchrotron Radiat; 2009 Mar; 16(Pt 2):191-204. PubMed ID: 19240331
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Antioxidant potential of anaerobic human plasma: role of serum albumin and thiols as scavengers of carbon radicals.
    Soriani M; Pietraforte D; Minetti M
    Arch Biochem Biophys; 1994 Jul; 312(1):180-8. PubMed ID: 8031126
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bio-SAXS of single-stranded DNA-binding proteins: radiation protection by the compatible solute ectoine.
    Hallier DC; Smales GJ; Seitz H; Hahn MB
    Phys Chem Chem Phys; 2023 Feb; 25(7):5372-5382. PubMed ID: 36637121
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Small angle X-ray scattering as a complementary tool for high-throughput structural studies.
    Grant TD; Luft JR; Wolfley JR; Tsuruta H; Martel A; Montelione GT; Snell EH
    Biopolymers; 2011 Aug; 95(8):517-30. PubMed ID: 21462184
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly Catalytic Nanodots with Renal Clearance for Radiation Protection.
    Zhang XD; Zhang J; Wang J; Yang J; Chen J; Shen X; Deng J; Deng D; Long W; Sun YM; Liu C; Li M
    ACS Nano; 2016 Apr; 10(4):4511-9. PubMed ID: 27018632
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantification of total oxidant scavenging capacity of antioxidants for peroxynitrite, peroxyl radicals, and hydroxyl radicals.
    Regoli F; Winston GW
    Toxicol Appl Pharmacol; 1999 Apr; 156(2):96-105. PubMed ID: 10198274
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Software for the high-throughput collection of SAXS data using an enhanced Blu-Ice/DCS control system.
    Classen S; Rodic I; Holton J; Hura GL; Hammel M; Tainer JA
    J Synchrotron Radiat; 2010 Nov; 17(6):774-81. PubMed ID: 20975223
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of tools to automate quantitative analysis of radiation damage in SAXS experiments.
    Brooks-Bartlett JC; Batters RA; Bury CS; Lowe ED; Ginn HM; Round A; Garman EF
    J Synchrotron Radiat; 2017 Jan; 24(Pt 1):63-72. PubMed ID: 28009547
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural changes in a cryo-cooled protein crystal owing to radiation damage.
    Burmeister WP
    Acta Crystallogr D Biol Crystallogr; 2000 Mar; 56(Pt 3):328-41. PubMed ID: 10713520
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The impact of the oxygen scavenger on the dose-rate dependence and dose sensitivity of MAGIC type polymer gels.
    Khan M; Heilemann G; Kuess P; Georg D; Berg A
    Phys Med Biol; 2018 Mar; 63(6):06NT01. PubMed ID: 29528035
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.