These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 34475294)

  • 1. X-ray Laue diffraction by sectioned multilayers. I. Pendellösung effect and rocking curves.
    Punegov VI
    J Synchrotron Radiat; 2021 Sep; 28(Pt 5):1466-1475. PubMed ID: 34475294
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dependence of X-ray plane-wave rocking curves on the deviation from exact Bragg orientation in and perpendicular to the diffraction plane for the asymmetrical Laue case.
    Balyan MK
    Acta Crystallogr A Found Adv; 2018 May; 74(Pt 3):204-215. PubMed ID: 29724966
    [TBL] [Abstract][Full Text] [Related]  

  • 3. X-ray diffraction in perfect t x l crystals. Rocking curves.
    Thorkildsen G; Larsen HB
    Acta Crystallogr A; 1999 Sep; 55(Pt 5):840-854. PubMed ID: 10927294
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-beam X-ray rocking curves calculated from computer-simulated pinhole topographs.
    Ishiwata G; Okitsu K; Ishiguro M
    Acta Crystallogr A; 2010 Jul; 66(Pt 4):484-8. PubMed ID: 20555189
    [TBL] [Abstract][Full Text] [Related]  

  • 5. X-ray multislice computation using the Moodie-Wagenfeld equations: divergent-beam pattern simulation in three-beam and six-beam Laue cases.
    Goodman P; Liu L
    Acta Crystallogr A; 1999 Mar; 55(Pt 2 Pt 1):246-257. PubMed ID: 10927256
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of crystal quality of thin protein crystals based on the dynamical theory of X-ray diffraction.
    Abe M; Suzuki R; Kojima K; Tachibana M
    IUCrJ; 2020 Jul; 7(Pt 4):761-766. PubMed ID: 32695422
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of surface undulations on asymmetric X-ray diffraction: a rocking-curve topography study.
    Macrander A; Pereira N; Huang X; Kasman E; Qian J; Wojcik M; Assoufid L
    J Appl Crystallogr; 2020 Jun; 53(Pt 3):789-792. PubMed ID: 32684893
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A lamellar model for the X-ray rocking curves of sagittally bent Laue crystals.
    Zhong Z; Kao CC; Siddons DP; Zhong H; Hastings JB
    Acta Crystallogr A; 2003 Jan; 59(Pt 1):1-6. PubMed ID: 12496454
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phase of Pendellösung oscillations in X-ray dynamical diffraction for perfect crystals.
    Saka T
    Acta Crystallogr A Found Adv; 2020 Mar; 76(Pt 2):132-136. PubMed ID: 32124851
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Non-projectiveness of X-ray Pendellösung-fringed diffraction images.
    Yoshimura J
    J Synchrotron Radiat; 2000 Nov; 7(Pt 6):374-81. PubMed ID: 16609224
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rocking-curve width of sagittally bent Laue crystals.
    Zhong Z; Kao CC; Siddons DP; Hastings JB
    Acta Crystallogr A; 2002 Sep; 58(Pt 5):487-93. PubMed ID: 12192122
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bent perfect crystals as X-ray focusing polychromators in symmetric Laue geometry.
    Guigay JP; Ferrero C; Bhattacharyya D; Mathon O; Pascarelli S
    Acta Crystallogr A; 2013 Jan; 69(Pt 1):91-7. PubMed ID: 23250065
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-efficiency x-ray gratings with asymmetric-cut multilayers.
    Bajt S; Chapman HN; Aquila A; Gullikson E
    J Opt Soc Am A Opt Image Sci Vis; 2012 Mar; 29(3):216-30. PubMed ID: 22472750
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Takagi-Taupin dynamical X-ray diffraction simulations of asymmetric X-ray diffraction from crystals: the effects of surface undulations.
    Macrander A
    J Appl Crystallogr; 2020 Jun; 53(Pt 3):793-799. PubMed ID: 32684894
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation and measurement of an x-ray Laue-type monochromator based on a WSi
    Yue S; Hou Q; Ji B; Zhou L; Li M; Liu P; Chang G
    Appl Opt; 2024 Apr; 63(12):3260-3264. PubMed ID: 38856475
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interference fringes in multiple Bragg-Laue mode.
    Fukamachi T; Hirano K; Negishi R; Kanematsu Y; Jongsukswat S; Hirano K; Kawamura T
    Acta Crystallogr A; 2011 Mar; 67(Pt 2):154-9. PubMed ID: 21325718
    [TBL] [Abstract][Full Text] [Related]  

  • 17. X-Ray Diffraction Tomography Recovery of the 3D Displacement-Field Function of the Coulomb-Type Point Defect in a Crystal.
    Chukhovskii FN; Konarev PV; Volkov VV
    Sci Rep; 2019 Oct; 9(1):14216. PubMed ID: 31578401
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An alternative method to the Takagi-Taupin equations for studying dark-field X-ray microscopy of deformed crystals.
    Wang KL; Kang X; Li XY
    Acta Crystallogr A Found Adv; 2024 Nov; 80(Pt 6):414-421. PubMed ID: 39324184
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental observation of a strange temporal oscillation of X-ray Pendellösung fringes.
    Yoshimura J; Hirano K
    J Synchrotron Radiat; 2009 Sep; 16(Pt 5):601-9. PubMed ID: 19713632
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of implanted semiconductors by means of white-beam and plane-wave synchrotron topography.
    Wieteska K; Wierzchowski W; Graeff W; Turos A; Grötzschel R
    J Synchrotron Radiat; 2000 Sep; 7(Pt 5):318-25. PubMed ID: 16609215
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.