These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
91 related articles for article (PubMed ID: 3447531)
1. Microbial transformation of azacarbazoles. IX. Preliminary studies on hydroxylation of 2,3-benzo-1,4-dimethyl-alpha-iso-carboline by Paecilomyces flavinosus. Peczyńska-Czoch W; Mordarski M; Kaczmarek L; Nantka-Namirski P Arch Immunol Ther Exp (Warsz); 1987; 35(2):143-6. PubMed ID: 3447531 [TBL] [Abstract][Full Text] [Related]
2. Microbial transformation of azacarbazoles. VII. Antitumor properties of benzo-alpha-iso-carbolines formed by Kitasatosporia setae strain from corresponding benzo-alpha-carbolines. Peczyńska-Czoch W Arch Immunol Ther Exp (Warsz); 1987; 35(2):129-37. PubMed ID: 3447529 [TBL] [Abstract][Full Text] [Related]
3. Microbial transformation of azacarbazoles. IV. Conversion of chloro-substituted alpha-carbolines by Kitasatosporia setae strain. Peczyńska-Czoch W; Mordarski M; Kaczmarek L; Nantka-Namirski P Arch Immunol Ther Exp (Warsz); 1987; 35(2):109-15. PubMed ID: 3447526 [TBL] [Abstract][Full Text] [Related]
4. Microbial transformation of azacarbazoles. III. Conversion of methoxy- and phenyl- substituted alpha-carbolines to corresponding alpha-iso-carbolines by Kitasatosporia setae strain. Peczyńska-Czoch W Arch Immunol Ther Exp (Warsz); 1987; 35(2):103-7. PubMed ID: 3447525 [TBL] [Abstract][Full Text] [Related]
5. Microbial transformation of azacarbazoles. VIII. Production of 14C-labelled benzo-alpha-iso-carbolines by permeabilized cells of Kitasatosporia setae strain. Peczyńska-Czoch W Arch Immunol Ther Exp (Warsz); 1987; 35(2):139-42. PubMed ID: 3447530 [TBL] [Abstract][Full Text] [Related]
6. Microbial transformation of azacarbazoles. V. Studies on N-1 methylation of 4-methyl-alpha-carboline by Kitasatosporia setae strain. Peczyńska-Czoch W Arch Immunol Ther Exp (Warsz); 1987; 35(2):117-24. PubMed ID: 3447527 [TBL] [Abstract][Full Text] [Related]
7. Microbial transformation of azacarbazoles. I. N-methylation of alpha-, beta-, and gamma-carbolines by Kitasatosporia setae strain. Peczyńska-Czoch W; Mordarski M; Kaczmarek L; Nantka-Namirski P Arch Immunol Ther Exp (Warsz); 1987; 35(2):89-95. PubMed ID: 3447539 [TBL] [Abstract][Full Text] [Related]
8. Microbial transformation of azacarbazoles. II. Conversion of methyl-substituted alpha-carbolines to corresponding alpha-iso-carbolines by Kitasatosporia setae strain. Peczyńska-Czoch W Arch Immunol Ther Exp (Warsz); 1987; 35(2):97-101. PubMed ID: 3447540 [TBL] [Abstract][Full Text] [Related]
9. Oxidation and ring cleavage of dibenzofuran by the filamentous fungus Paecilomyces lilacinus. Gesell M; Hammer E; Mikolasch A; Schauer F Arch Microbiol; 2004 Sep; 182(1):51-9. PubMed ID: 15278240 [TBL] [Abstract][Full Text] [Related]
10. Microbial transformation of azacarbazoles. VI. Conversion of 6-hydroxy- and 6-amino-alpha-carbolines with copper oxidases. Peczyńska-Czoch W Arch Immunol Ther Exp (Warsz); 1987; 35(2):125-8. PubMed ID: 3447528 [TBL] [Abstract][Full Text] [Related]
11. Microbial transformation of amino- and hydroxyanthraquinones by Beauveria bassiana ATCC 7159. Zhan J; Gunatilaka AA J Nat Prod; 2006 Oct; 69(10):1525-7. PubMed ID: 17067178 [TBL] [Abstract][Full Text] [Related]
12. Microbial O-demethylation, hydroxylation, sulfation, and ribosylation of a xanthone derivative from Halenia elliptica. Yuan W; Zhang LP; Cheng KD; Zhu P; Wang Q; He HX; Zhu HX J Nat Prod; 2006 May; 69(5):811-4. PubMed ID: 16724847 [TBL] [Abstract][Full Text] [Related]
13. Beauverolides L and La from Beauveria tenella and Paecilomyces fumosoroseus. Jegorov A; Sedmera P; Matha V; Simek P; Zahradnícková H; Landa Z; Eyal J Phytochemistry; 1994 Nov; 37(5):1301-3. PubMed ID: 7765754 [TBL] [Abstract][Full Text] [Related]
14. Microbial degradation of pendimethalin. Singh SB; Kulshrestha G J Environ Sci Health B; 1991 Jun; 26(3):309-21. PubMed ID: 1894917 [TBL] [Abstract][Full Text] [Related]
15. Pathogenicity of the entomopathogenic fungi paecilomyces spp. and Beauveria bassiana against the silverleaf whitefly, Bemisia argentifolii. Wraight SP; Carruthers RI; Bradley CA; Jaronski ST; Lacey LA; Wood P; Galaini-Wraight S J Invertebr Pathol; 1998 May; 71(3):217-26. PubMed ID: 9538026 [TBL] [Abstract][Full Text] [Related]
16. Microbial transformation of steroids: contribution to 14 alpha-hydroxylations. Hu S; Genain G; Azerad R Steroids; 1995 Apr; 60(4):337-52. PubMed ID: 8539788 [TBL] [Abstract][Full Text] [Related]
17. A novel dodine-free selective medium based on the use of cetyl trimethyl ammonium bromide (CTAB) to isolate Beauveria bassiana, Metarhizium anisopliae sensu lato and Paecilomyces lilacinus from soil. Posadas JB; Comerio RM; Mini JI; Nussenbaum AL; Lecuona RE Mycologia; 2012; 104(4):974-80. PubMed ID: 22314588 [TBL] [Abstract][Full Text] [Related]
18. Paecilotoxin production in clinical or terrestrial isolates of Paecilomyces lilacinus strains. Mikami Y; Yazawa K; Fukushima K; Arai T; Udagawa S; Samson RA Mycopathologia; 1989 Dec; 108(3):195-9. PubMed ID: 2615806 [TBL] [Abstract][Full Text] [Related]
19. Biotransformation of biphenyl by Paecilomyces lilacinus and characterization of ring cleavage products. Gesell M; Hammer E; Specht M; Francke W; Schauer F Appl Environ Microbiol; 2001 Apr; 67(4):1551-7. PubMed ID: 11282604 [TBL] [Abstract][Full Text] [Related]
20. Steroid hydroxylations with Botryodiplodia malorum and Colletotrichum lini. Romano A; Romano D; Ragg E; Costantino F; Lenna R; Gandolfi R; Molinari F Steroids; 2006 Jun; 71(6):429-34. PubMed ID: 16580036 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]