These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 34475506)

  • 1. Fanless, porous graphene-copper composite heat sink for micro devices.
    Rho H; Jang YS; Bae H; Cha AN; Lee SH; Ha JS
    Sci Rep; 2021 Sep; 11(1):17607. PubMed ID: 34475506
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Porous copper-graphene heterostructures for cooling of electronic devices.
    Rho H; Jang YS; Kim S; Bae S; Kim TW; Lee DS; Ha JS; Lee SH
    Nanoscale; 2017 Jun; 9(22):7565-7569. PubMed ID: 28534904
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Graphene-Carbon-Metal Composite Film for a Flexible Heat Sink.
    Cho H; Rho H; Kim JH; Chae SH; Pham TV; Seo TH; Kim HY; Ha JS; Kim HC; Lee SH; Kim MJ
    ACS Appl Mater Interfaces; 2017 Nov; 9(46):40801-40809. PubMed ID: 29064660
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Graphene-copper composite with micro-layered grains and ultrahigh strength.
    Wang L; Yang Z; Cui Y; Wei B; Xu S; Sheng J; Wang M; Zhu Y; Fei W
    Sci Rep; 2017 Feb; 7():41896. PubMed ID: 28169306
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancement of Thermal Management Performance of Copper Foil Using Additive-Free Graphene Coating.
    Hu B; Yuan H; Chen G
    Polymers (Basel); 2024 Jun; 16(13):. PubMed ID: 39000727
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three-Dimensional Porous Copper-Graphene Heterostructures with Durability and High Heat Dissipation Performance.
    Rho H; Lee S; Bae S; Kim TW; Lee DS; Lee HJ; Hwang JY; Jeong T; Kim S; Ha JS; Lee SH
    Sci Rep; 2015 Aug; 5():12710. PubMed ID: 26234425
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Remarkable Effects of an Electrodeposited Copper Skin on the Strength and the Electrical and Thermal Conductivities of Reduced Graphene Oxide-Printed Scaffolds.
    Moyano JJ; Garcia I; de Damborenea J; Pérez-Coll D; Belmonte M; Miranzo P; Osendi MI
    ACS Appl Mater Interfaces; 2020 May; 12(21):24209-24217. PubMed ID: 32368891
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Woven Kevlar Fiber/Polydimethylsiloxane/Reduced Graphene Oxide Composite-Based Personal Thermal Management with Freestanding Cu-Ni Core-Shell Nanowires.
    Hazarika A; Deka BK; Kim D; Jeong HE; Park YB; Park HW
    Nano Lett; 2018 Nov; 18(11):6731-6739. PubMed ID: 30290118
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermal interface material with graphene enhanced sintered copper for high temperature power electronics.
    Deng S; Zhang X; Xiao GD; Zhang K; He X; Xin S; Liu X; Zhong A; Chai Y
    Nanotechnology; 2021 May; 32(31):. PubMed ID: 33910177
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Solution-processed graphene oxide electrode for supercapacitors fabricated using low temperature thermal reduction.
    Kil HJ; Yun K; Yoo ME; Kim S; Park JW
    RSC Adv; 2020 Jun; 10(37):22102-22111. PubMed ID: 35516633
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microstructure and nanoindentation behavior of Cu composites reinforced with graphene nanoplatelets by electroless co-deposition technique.
    Zhang Q; Qin Z; Luo Q; Wu Z; Liu L; Shen B; Hu W
    Sci Rep; 2017 May; 7(1):1338. PubMed ID: 28465613
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel fabrication method of copper-reduced graphene oxide composites with highly aligned reduced graphene oxide and highly anisotropic thermal conductivity.
    Nazeer F; Ma Z; Xie Y; Gao L; Malik A; Khan MA; Wang F; Li H
    RSC Adv; 2019 Jun; 9(31):17967-17974. PubMed ID: 35520544
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tuning Porosity of Reduced Graphene Oxide Membrane Materials by Alkali Activation.
    Shen Y; Maurizi L; Magnacca G; Boffa V; Yue Y
    Nanomaterials (Basel); 2020 Oct; 10(11):. PubMed ID: 33105670
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A flexible, room-temperature and solution-processible copper nanowire based transparent electrode protected by reduced graphene oxide exhibiting high performance and improved stability.
    Tang Y; Ruan H; Chen Y; Xiang J; Liu H; Jin R; Shi D; Chen S; Zhang J
    Nanotechnology; 2020 Jan; 31(4):045704. PubMed ID: 31658034
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reduced Graphene Oxide-Based Ordered Macroporous Films on a Curved Surface: General Fabrication and Application in Gas Sensors.
    Xu S; Sun F; Pan Z; Huang C; Yang S; Long J; Chen Y
    ACS Appl Mater Interfaces; 2016 Feb; 8(5):3428-37. PubMed ID: 26829014
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Activated Graphene Deposited on Porous Cu Mesh for Supercapacitors.
    Lim T; Kim T; Suk JW
    Nanomaterials (Basel); 2021 Mar; 11(4):. PubMed ID: 33807356
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of highly faceted reduced graphene oxide-coated copper oxide and copper nanoparticles on a copper foil surface.
    Ortega-Amaya R; Matsumoto Y; Espinoza-Rivas AM; Pérez-Guzmán MA; Ortega-López M
    Beilstein J Nanotechnol; 2016; 7():1010-7. PubMed ID: 27547618
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct electrochemical synthesis of reduced graphene oxide (rGO)/copper composite films and their electrical/electroactive properties.
    Xie G; Forslund M; Pan J
    ACS Appl Mater Interfaces; 2014 May; 6(10):7444-55. PubMed ID: 24787038
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the HKUST-1/GO and HKUST-1/rGO Composites: The Impact of Synthesis Method on Physicochemical Properties.
    Jagódka P; Matus K; Łamacz A
    Molecules; 2022 Oct; 27(20):. PubMed ID: 36296674
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Temperature-driven growth of reduced graphene oxide/copper nanocomposites for glucose sensing.
    Zhang Q; Wu Z; Xu C; Liu L; Hu W
    Nanotechnology; 2016 Dec; 27(49):495603. PubMed ID: 27823987
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.