These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
344 related articles for article (PubMed ID: 34475852)
41. Joint production of biodiesel and bioethanol from filamentous oleaginous microalgae Tribonema sp. Wang H; Ji C; Bi S; Zhou P; Chen L; Liu T Bioresour Technol; 2014 Nov; 172():169-173. PubMed ID: 25260180 [TBL] [Abstract][Full Text] [Related]
42. Comparative lipid production by oleaginous yeasts in hydrolyzates of lignocellulosic biomass and process strategy for high titers. Slininger PJ; Dien BS; Kurtzman CP; Moser BR; Bakota EL; Thompson SR; O'Bryan PJ; Cotta MA; Balan V; Jin M; Sousa Lda C; Dale BE Biotechnol Bioeng; 2016 Aug; 113(8):1676-90. PubMed ID: 26724417 [TBL] [Abstract][Full Text] [Related]
43. Valorization of Brewers' Spent Grain for the Production of Lipids by Oleaginous Yeast. Patel A; Mikes F; Bühler S; Matsakas L Molecules; 2018 Nov; 23(12):. PubMed ID: 30469531 [TBL] [Abstract][Full Text] [Related]
44. Algae as potential feedstock for the production of biofuels and value-added products: Opportunities and challenges. Kumar M; Sun Y; Rathour R; Pandey A; Thakur IS; Tsang DCW Sci Total Environ; 2020 May; 716():137116. PubMed ID: 32059310 [TBL] [Abstract][Full Text] [Related]
45. Mixed microalgae consortia growth under higher concentration of CO Aslam A; Thomas-Hall SR; Manzoor M; Jabeen F; Iqbal M; Uz Zaman Q; Schenk PM; Asif Tahir M J Photochem Photobiol B; 2018 Feb; 179():126-133. PubMed ID: 29367147 [TBL] [Abstract][Full Text] [Related]
46. A comparative study on de novo and ex novo lipid fermentation by oleaginous yeast using glucose and sonicated waste cooking oil. Patel A; Matsakas L Ultrason Sonochem; 2019 Apr; 52():364-374. PubMed ID: 30559080 [TBL] [Abstract][Full Text] [Related]
47. Properties of various plants and animals feedstocks for biodiesel production. Karmakar A; Karmakar S; Mukherjee S Bioresour Technol; 2010 Oct; 101(19):7201-10. PubMed ID: 20493683 [TBL] [Abstract][Full Text] [Related]
48. Life Cycle Greenhouse Gas Emissions of Biodiesel and Renewable Diesel Production in the United States. Xu H; Ou L; Li Y; Hawkins TR; Wang M Environ Sci Technol; 2022 Jun; 56(12):7512-7521. PubMed ID: 35576244 [TBL] [Abstract][Full Text] [Related]
49. Technical difficulties and solutions of direct transesterification process of microbial oil for biodiesel synthesis. Yousuf A; Khan MR; Islam MA; Wahid ZA; Pirozzi D Biotechnol Lett; 2017 Jan; 39(1):13-23. PubMed ID: 27659031 [TBL] [Abstract][Full Text] [Related]
50. Industrial wastes as a promising renewable source for production of microbial lipid and direct transesterification of the lipid into biodiesel. Cheirsilp B; Louhasakul Y Bioresour Technol; 2013 Aug; 142():329-37. PubMed ID: 23747444 [TBL] [Abstract][Full Text] [Related]
51. Integration process of biodiesel production from filamentous oleaginous microalgae Tribonema minus. Wang H; Gao L; Chen L; Guo F; Liu T Bioresour Technol; 2013 Aug; 142():39-44. PubMed ID: 23735788 [TBL] [Abstract][Full Text] [Related]
52. Biodiesel production with microalgae as feedstock: from strains to biodiesel. Gong Y; Jiang M Biotechnol Lett; 2011 Jul; 33(7):1269-84. PubMed ID: 21380528 [TBL] [Abstract][Full Text] [Related]
53. Bioengineering to Accelerate Biodiesel Production for a Sustainable Biorefinery. Rathore D; Sevda S; Prasad S; Venkatramanan V; Chandel AK; Kataki R; Bhadra S; Channashettar V; Bora N; Singh A Bioengineering (Basel); 2022 Oct; 9(11):. PubMed ID: 36354528 [TBL] [Abstract][Full Text] [Related]
54. Simultaneous lipid production for biodiesel feedstock and decontamination of sago processing wastewater using Thangavelu K; Sundararaju P; Srinivasan N; Muniraj I; Uthandi S Biotechnol Biofuels; 2020; 13():35. PubMed ID: 32158499 [TBL] [Abstract][Full Text] [Related]
55. Lipid production for second generation biodiesel by the oleaginous yeast Rhodotorula graminis. Galafassi S; Cucchetti D; Pizza F; Franzosi G; Bianchi D; Compagno C Bioresour Technol; 2012 May; 111():398-403. PubMed ID: 22366600 [TBL] [Abstract][Full Text] [Related]
56. Extraction and characterization of triglycerides from coffeeweed and switchgrass seeds as potential feedstocks for biodiesel production. Armah-Agyeman G; Gyamerah M; Biney PO; Woldesenbet S J Sci Food Agric; 2016 Oct; 96(13):4390-7. PubMed ID: 26805469 [TBL] [Abstract][Full Text] [Related]
57. A sustainable use of low-cost raw substrates for biodiesel production by the oleaginous yeast Arous F; Atitallah IB; Nasri M; Mechichi T 3 Biotech; 2017 Aug; 7(4):268. PubMed ID: 28794923 [TBL] [Abstract][Full Text] [Related]
58. Feasibility of filamentous fungi for biofuel production using hydrolysate from dilute sulfuric acid pretreatment of wheat straw. Zheng Y; Yu X; Zeng J; Chen S Biotechnol Biofuels; 2012 Jul; 5(1):50. PubMed ID: 22824058 [TBL] [Abstract][Full Text] [Related]
59. Direct transesterification of fatty acids produced by Fusarium solani for biodiesel production: effect of carbon and nitrogen on lipid accumulation in the fungal biomass. Rasmey AM; Tawfik MA; Abdel-Kareem MM J Appl Microbiol; 2020 Apr; 128(4):1074-1085. PubMed ID: 31802586 [TBL] [Abstract][Full Text] [Related]