BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 34475857)

  • 1. Functional Identification of the
    Liu Q; Wang S; Long J; Chen Z; Yang B; Lin F
    Front Microbiol; 2021; 12():686715. PubMed ID: 34475857
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Highly efficient genome editing in Xanthomonas oryzae pv. oryzae through repurposing the endogenous type I-C CRISPR-Cas system.
    Jiang D; Zhang D; Li S; Liang Y; Zhang Q; Qin X; Gao J; Qiu JL
    Mol Plant Pathol; 2022 Apr; 23(4):583-594. PubMed ID: 34954876
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genetic determinants of PAM-dependent DNA targeting and pre-crRNA processing in Sulfolobus islandicus.
    Peng W; Li H; Hallstrøm S; Peng N; Liang YX; She Q
    RNA Biol; 2013 May; 10(5):738-48. PubMed ID: 23392249
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conservation and variability in the structure and function of the Cas5d endoribonuclease in the CRISPR-mediated microbial immune system.
    Koo Y; Ka D; Kim EJ; Suh N; Bae E
    J Mol Biol; 2013 Oct; 425(20):3799-810. PubMed ID: 23500492
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biogenesis pathways of RNA guides in archaeal and bacterial CRISPR-Cas adaptive immunity.
    Charpentier E; Richter H; van der Oost J; White MF
    FEMS Microbiol Rev; 2015 May; 39(3):428-41. PubMed ID: 25994611
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CRISPR/Cas9-targeted mutagenesis of Os8N3 in rice to confer resistance to Xanthomonas oryzae pv. oryzae.
    Kim YA; Moon H; Park CJ
    Rice (N Y); 2019 Aug; 12(1):67. PubMed ID: 31446506
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Clustered Regularly Interspaced Short Palindromic Repeat-Dependent, Biofilm-Specific Death of Pseudomonas aeruginosa Mediated by Increased Expression of Phage-Related Genes.
    Heussler GE; Cady KC; Koeppen K; Bhuju S; Stanton BA; O'Toole GA
    mBio; 2015 May; 6(3):e00129-15. PubMed ID: 25968642
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The CRISPR-Cas Mechanism for Adaptive Immunity and Alternate Bacterial Functions Fuels Diverse Biotechnologies.
    Newsom S; Parameshwaran HP; Martin L; Rajan R
    Front Cell Infect Microbiol; 2020; 10():619763. PubMed ID: 33585286
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Harnessing Type I and Type III CRISPR-Cas systems for genome editing.
    Li Y; Pan S; Zhang Y; Ren M; Feng M; Peng N; Chen L; Liang YX; She Q
    Nucleic Acids Res; 2016 Feb; 44(4):e34. PubMed ID: 26467477
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exploiting endogenous CRISPR-Cas system for multiplex genome editing in Clostridium tyrobutyricum and engineer the strain for high-level butanol production.
    Zhang J; Zong W; Hong W; Zhang ZT; Wang Y
    Metab Eng; 2018 May; 47():49-59. PubMed ID: 29530750
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interference activity of a minimal Type I CRISPR-Cas system from Shewanella putrefaciens.
    Dwarakanath S; Brenzinger S; Gleditzsch D; Plagens A; Klingl A; Thormann K; Randau L
    Nucleic Acids Res; 2015 Oct; 43(18):8913-23. PubMed ID: 26350210
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Distinct Subcellular Localization of a Type I CRISPR Complex and the Cas3 Nuclease in Bacteria.
    Govindarajan S; Borges A; Karambelkar S; Bondy-Denomy J
    J Bacteriol; 2022 May; 204(5):e0010522. PubMed ID: 35389256
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CRISPR/FnCas12a-mediated efficient multiplex and iterative genome editing in bacterial plant pathogens without donor DNA templates.
    Yan F; Wang J; Zhang S; Lu Z; Li S; Ji Z; Song C; Chen G; Xu J; Feng J; Zhou X; Zhou H
    PLoS Pathog; 2023 Jan; 19(1):e1010961. PubMed ID: 36626407
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determining the Specificity of Cascade Binding, Interference, and Primed Adaptation
    Cooper LA; Stringer AM; Wade JT
    mBio; 2018 Apr; 9(2):. PubMed ID: 29666291
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Advances in the RNA-targeting CRISPR-Cas systems].
    Hong T; Luo Q
    Sheng Wu Gong Cheng Xue Bao; 2023 Apr; 39(4):1363-1373. PubMed ID: 37154311
    [TBL] [Abstract][Full Text] [Related]  

  • 16. RNA-guided genome editing in plants using a CRISPR-Cas system.
    Xie K; Yang Y
    Mol Plant; 2013 Nov; 6(6):1975-83. PubMed ID: 23956122
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cas5d protein processes pre-crRNA and assembles into a cascade-like interference complex in subtype I-C/Dvulg CRISPR-Cas system.
    Nam KH; Haitjema C; Liu X; Ding F; Wang H; DeLisa MP; Ke A
    Structure; 2012 Sep; 20(9):1574-84. PubMed ID: 22841292
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of a CRISPR/Cpf1 system for multiplex gene editing in Aspergillus oryzae.
    Chen T; Chen Z; Zhang H; Li Y; Yao L; Zeng B; Zhang Z
    Folia Microbiol (Praha); 2024 Apr; 69(2):373-382. PubMed ID: 37490214
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cross-cleavage activity of Cas6b in crRNA processing of two different CRISPR-Cas systems in Methanosarcina mazei Gö1.
    Nickel L; Ulbricht A; Alkhnbashi OS; Förstner KU; Cassidy L; Weidenbach K; Backofen R; Schmitz RA
    RNA Biol; 2019 Apr; 16(4):492-503. PubMed ID: 30153081
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cas3 is a limiting factor for CRISPR-Cas immunity in Escherichia coli cells lacking H-NS.
    Majsec K; Bolt EL; Ivančić-Baće I
    BMC Microbiol; 2016 Mar; 16():28. PubMed ID: 26956996
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.