These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 34476169)

  • 1. The role of convolutional neural networks in scanning probe microscopy: a review.
    Azuri I; Rosenhek-Goldian I; Regev-Rudzki N; Fantner G; Cohen SR
    Beilstein J Nanotechnol; 2021; 12():878-901. PubMed ID: 34476169
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Research and Application of Ancient Chinese Pattern Restoration Based on Deep Convolutional Neural Network.
    Fu X
    Comput Intell Neurosci; 2021; 2021():2691346. PubMed ID: 34925485
    [TBL] [Abstract][Full Text] [Related]  

  • 3. How scanning probe microscopy can be supported by artificial intelligence and quantum computing?
    Pregowska A; Roszkiewicz A; Osial M; Giersig M
    Microsc Res Tech; 2024 Jun; ():. PubMed ID: 38864463
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Locating critical events in AFM force measurements by means of one-dimensional convolutional neural networks.
    Sotres J; Boyd H; Gonzalez-Martinez JF
    Sci Rep; 2022 Jul; 12(1):12995. PubMed ID: 35906466
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Speeding up the Topography Imaging of Atomic Force Microscopy by Convolutional Neural Network.
    Zheng P; He H; Gao Y; Tang P; Wang H; Peng J; Wang L; Su C; Ding S
    Anal Chem; 2022 Mar; 94(12):5041-5047. PubMed ID: 35294191
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional Scanning Probe Imaging of Nanostructured Solar Energy Materials.
    Giridharagopal R; Cox PA; Ginger DS
    Acc Chem Res; 2016 Sep; 49(9):1769-76. PubMed ID: 27575611
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular Identification from AFM Images Using the IUPAC Nomenclature and Attribute Multimodal Recurrent Neural Networks.
    Carracedo-Cosme J; Romero-Muñiz C; Pou P; Pérez R
    ACS Appl Mater Interfaces; 2023 May; 15(18):22692-22704. PubMed ID: 37126486
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deep Learning in Microscopy Image Analysis: A Survey.
    Fuyong Xing ; Yuanpu Xie ; Hai Su ; Fujun Liu ; Lin Yang
    IEEE Trans Neural Netw Learn Syst; 2018 Oct; 29(10):4550-4568. PubMed ID: 29989994
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A multimodal convolutional neuro-fuzzy network for emotion understanding of movie clips.
    Nguyen TL; Kavuri S; Lee M
    Neural Netw; 2019 Oct; 118():208-219. PubMed ID: 31299625
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application of Electrochemical Atomic Force Microscopy (EC-AFM) in the Corrosion Study of Metallic Materials.
    Chen H; Qin Z; He M; Liu Y; Wu Z
    Materials (Basel); 2020 Feb; 13(3):. PubMed ID: 32028601
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microscopic techniques bridging between nanoscale and microscale with an atomically sharpened tip - field ion microscopy/scanning probe microscopy/ scanning electron microscopy.
    Tomitori M; Sasahara A
    Microscopy (Oxf); 2014 Nov; 63 Suppl 1():i11-i12. PubMed ID: 25359799
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Deep-Learning Framework for the Automated Recognition of Molecules in Scanning-Probe-Microscopy Images.
    Zhu Z; Lu J; Zheng F; Chen C; Lv Y; Jiang H; Yan Y; Narita A; Müllen K; Wang XY; Sun Q
    Angew Chem Int Ed Engl; 2022 Dec; 61(49):e202213503. PubMed ID: 36178779
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mapping intrinsic electromechanical responses at the nanoscale via sequential excitation scanning probe microscopy empowered by deep data.
    Huang B; Esfahani EN; Li J
    Natl Sci Rev; 2019 Jan; 6(1):55-63. PubMed ID: 34691831
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Learning physical properties of liquid crystals with deep convolutional neural networks.
    Sigaki HYD; Lenzi EK; Zola RS; Perc M; Ribeiro HV
    Sci Rep; 2020 May; 10(1):7664. PubMed ID: 32376993
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exploring Physics of Ferroelectric Domain Walls in Real Time: Deep Learning Enabled Scanning Probe Microscopy.
    Liu Y; Kelley KP; Funakubo H; Kalinin SV; Ziatdinov M
    Adv Sci (Weinh); 2022 Nov; 9(31):e2203957. PubMed ID: 36065001
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-resolution noncontact atomic force microscopy.
    Pérez R; García R; Schwarz U
    Nanotechnology; 2009 Jul; 20(26):260201. PubMed ID: 19531843
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Trends in digital image processing of isolated microalgae by incorporating classification algorithm.
    Chong JWR; Khoo KS; Chew KW; Ting HY; Show PL
    Biotechnol Adv; 2023; 63():108095. PubMed ID: 36608745
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Autonomous Scanning Probe Microscopy in Situ Tip Conditioning through Machine Learning.
    Rashidi M; Wolkow RA
    ACS Nano; 2018 Jun; 12(6):5185-5189. PubMed ID: 29790333
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling scanning probe microscope lateral dynamics using the probe-surface interaction signal.
    Okorafor M; Clayton GM
    Rev Sci Instrum; 2011 Mar; 82(3):033707. PubMed ID: 21456751
    [TBL] [Abstract][Full Text] [Related]  

  • 20. New imaging modes for analyzing suspended ultra-thin membranes by double-tip scanning probe microscopy.
    Elibol K; Hummel S; Bayer BC; Meyer JC
    Sci Rep; 2020 Mar; 10(1):4839. PubMed ID: 32179773
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.