These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

287 related articles for article (PubMed ID: 34476358)

  • 1. Electroconductive Hydrogels for Tissue Engineering: Current Status and Future Perspectives.
    Rogers ZJ; Zeevi MP; Koppes R; Bencherif SA
    Bioelectricity; 2020 Sep; 2(3):279-292. PubMed ID: 34476358
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electroconductive hydrogels for biomedical applications.
    Lu H; Zhang N; Ma M
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2019 Nov; 11(6):e1568. PubMed ID: 31241253
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rational Design of Microfabricated Electroconductive Hydrogels for Biomedical Applications.
    Walker BW; Lara RP; Mogadam E; Yu CH; Kimball W; Annabi N
    Prog Polym Sci; 2019 May; 92():135-157. PubMed ID: 32831422
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electroconductive natural polymer-based hydrogels.
    Shi Z; Gao X; Ullah MW; Li S; Wang Q; Yang G
    Biomaterials; 2016 Dec; 111():40-54. PubMed ID: 27721086
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recent Development of Conductive Hydrogels for Tissue Engineering: Review and Perspective.
    Gao C; Song S; Lv Y; Huang J; Zhang Z
    Macromol Biosci; 2022 Aug; 22(8):e2200051. PubMed ID: 35472125
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electroconductive biomaterials for cardiac tissue engineering.
    Esmaeili H; Patino-Guerrero A; Hasany M; Ansari MO; Memic A; Dolatshahi-Pirouz A; Nikkhah M
    Acta Biomater; 2022 Feb; 139():118-140. PubMed ID: 34455109
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent Advances in Designing Electroconductive Biomaterials for Cardiac Tissue Engineering.
    Ghovvati M; Kharaziha M; Ardehali R; Annabi N
    Adv Healthc Mater; 2022 Jul; 11(13):e2200055. PubMed ID: 35368150
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-Dimensional Electroconductive Hyaluronic Acid Hydrogels Incorporated with Carbon Nanotubes and Polypyrrole by Catechol-Mediated Dispersion Enhance Neurogenesis of Human Neural Stem Cells.
    Shin J; Choi EJ; Cho JH; Cho AN; Jin Y; Yang K; Song C; Cho SW
    Biomacromolecules; 2017 Oct; 18(10):3060-3072. PubMed ID: 28876908
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recent advances in biological macromolecule based tissue-engineered composite scaffolds for cardiac tissue regeneration applications.
    Chandika P; Heo SY; Kim TH; Oh GW; Kim GH; Kim MS; Jung WK
    Int J Biol Macromol; 2020 Dec; 164():2329-2357. PubMed ID: 32795569
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three-Dimensional Printing and Injectable Conductive Hydrogels for Tissue Engineering Application.
    Jiang L; Wang Y; Liu Z; Ma C; Yan H; Xu N; Gang F; Wang X; Zhao L; Sun X
    Tissue Eng Part B Rev; 2019 Oct; 25(5):398-411. PubMed ID: 31115274
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three-dimensional electroconductive carbon nanotube-based hydrogel scaffolds enhance neural differentiation of stem cells from apical papilla.
    Liu J; Zou T; Zhang Y; Koh J; Li H; Wang Y; Zhao Y; Zhang C
    Biomater Adv; 2022 Jul; 138():212868. PubMed ID: 35913250
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electroconductive Nanobiomaterials for Tissue Engineering and Regenerative Medicine.
    Mostafavi E; Medina-Cruz D; Kalantari K; Taymoori A; Soltantabar P; Webster TJ
    Bioelectricity; 2020 Jun; 2(2):120-149. PubMed ID: 34471843
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 3D printing of electrically conductive hydrogels for tissue engineering and biosensors - A review.
    Distler T; Boccaccini AR
    Acta Biomater; 2020 Jan; 101():1-13. PubMed ID: 31476385
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electroconductive and injectable hydrogels based on gelatin and PEDOT:PSS for a minimally invasive approach in nervous tissue regeneration.
    Furlani F; Montanari M; Sangiorgi N; Saracino E; Campodoni E; Sanson A; Benfenati V; Tampieri A; Panseri S; Sandri M
    Biomater Sci; 2022 Apr; 10(8):2040-2053. PubMed ID: 35302129
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electroconductive scaffolds based on gelatin and PEDOT:PSS for cardiac regeneration.
    Furlani F; Campodoni E; Sangiorgi N; Montesi M; Sanson A; Sandri M; Panseri S
    Int J Biol Macromol; 2023 Jan; 224():266-280. PubMed ID: 36265541
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biodegradable and electroconductive poly(3,4-ethylenedioxythiophene)/carboxymethyl chitosan hydrogels for neural tissue engineering.
    Xu C; Guan S; Wang S; Gong W; Liu T; Ma X; Sun C
    Mater Sci Eng C Mater Biol Appl; 2018 Mar; 84():32-43. PubMed ID: 29519441
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electroconductive hydrogels: synthesis, characterization and biomedical applications.
    Guiseppi-Elie A
    Biomaterials; 2010 Apr; 31(10):2701-16. PubMed ID: 20060580
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rational design of injectable conducting polymer-based hydrogels for tissue engineering.
    Yu C; Yao F; Li J
    Acta Biomater; 2022 Feb; 139():4-21. PubMed ID: 33894350
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oligoaniline-based conductive biomaterials for tissue engineering.
    Zarrintaj P; Bakhshandeh B; Saeb MR; Sefat F; Rezaeian I; Ganjali MR; Ramakrishna S; Mozafari M
    Acta Biomater; 2018 May; 72():16-34. PubMed ID: 29625254
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The rationale and emergence of electroconductive biomaterial scaffolds in cardiac tissue engineering.
    Solazzo M; O'Brien FJ; Nicolosi V; Monaghan MG
    APL Bioeng; 2019 Dec; 3(4):041501. PubMed ID: 31650097
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.