BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

418 related articles for article (PubMed ID: 34476377)

  • 1. A Meta-Analysis of Bioelectric Data in Cancer, Embryogenesis, and Regeneration.
    Srivastava P; Kane A; Harrison C; Levin M
    Bioelectricity; 2021 Mar; 3(1):42-67. PubMed ID: 34476377
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular bioelectricity: how endogenous voltage potentials control cell behavior and instruct pattern regulation in vivo.
    Levin M
    Mol Biol Cell; 2014 Dec; 25(24):3835-50. PubMed ID: 25425556
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Endogenous bioelectrical networks store non-genetic patterning information during development and regeneration.
    Levin M
    J Physiol; 2014 Jun; 592(11):2295-305. PubMed ID: 24882814
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genome-wide analysis reveals conserved transcriptional responses downstream of resting potential change in Xenopus embryos, axolotl regeneration, and human mesenchymal cell differentiation.
    Pai VP; Martyniuk CJ; Echeverri K; Sundelacruz S; Kaplan DL; Levin M
    Regeneration (Oxf); 2016 Feb; 3(1):3-25. PubMed ID: 27499876
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Endogenous Voltage Potentials and the Microenvironment: Bioelectric Signals that Reveal, Induce and Normalize Cancer.
    Chernet B; Levin M
    J Clin Exp Oncol; 2013; Suppl 1():. PubMed ID: 25525610
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Endogenous Bioelectric Signaling Networks: Exploiting Voltage Gradients for Control of Growth and Form.
    Levin M; Pezzulo G; Finkelstein JM
    Annu Rev Biomed Eng; 2017 Jun; 19():353-387. PubMed ID: 28633567
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioelectric signaling: Reprogrammable circuits underlying embryogenesis, regeneration, and cancer.
    Levin M
    Cell; 2021 Apr; 184(8):1971-1989. PubMed ID: 33826908
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioelectric signalling via potassium channels: a mechanism for craniofacial dysmorphogenesis in KCNJ2-associated Andersen-Tawil Syndrome.
    Adams DS; Uzel SG; Akagi J; Wlodkowic D; Andreeva V; Yelick PC; Devitt-Lee A; Pare JF; Levin M
    J Physiol; 2016 Jun; 594(12):3245-70. PubMed ID: 26864374
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Endogenous gradients of resting potential instructively pattern embryonic neural tissue via Notch signaling and regulation of proliferation.
    Pai VP; Lemire JM; Paré JF; Lin G; Chen Y; Levin M
    J Neurosci; 2015 Mar; 35(10):4366-85. PubMed ID: 25762681
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioelectric gene and reaction networks: computational modelling of genetic, biochemical and bioelectrical dynamics in pattern regulation.
    Pietak A; Levin M
    J R Soc Interface; 2017 Sep; 14(134):. PubMed ID: 28954851
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrochemical patterns during Drosophila oogenesis: ion-transport mechanisms generate stage-specific gradients of pH and membrane potential in the follicle-cell epithelium.
    Weiß I; Bohrmann J
    BMC Dev Biol; 2019 Jun; 19(1):12. PubMed ID: 31226923
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ion Channel and Neurotransmitter Modulators as Electroceutical Approaches to the Control of Cancer.
    Tuszynski J; Tilli TM; Levin M
    Curr Pharm Des; 2017; 23(32):4827-4841. PubMed ID: 28554310
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of Bioelectricity During Cell Proliferation in Different Cell Types.
    Bhavsar MB; Leppik L; Costa Oliveira KM; Barker JH
    Front Bioeng Biotechnol; 2020; 8():603. PubMed ID: 32714900
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Light-activation of the Archaerhodopsin H(+)-pump reverses age-dependent loss of vertebrate regeneration: sparking system-level controls in vivo.
    Adams DS; Tseng AS; Levin M
    Biol Open; 2013 Mar; 2(3):306-13. PubMed ID: 23519324
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioelectric patterning during oogenesis: stage-specific distribution of membrane potentials, intracellular pH and ion-transport mechanisms in Drosophila ovarian follicles.
    Krüger J; Bohrmann J
    BMC Dev Biol; 2015 Jan; 15():1. PubMed ID: 25591552
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioelectrical control of positional information in development and regeneration: A review of conceptual and computational advances.
    Pietak A; Levin M
    Prog Biophys Mol Biol; 2018 Sep; 137():52-68. PubMed ID: 29626560
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysing bioelectrical phenomena in the Drosophila ovary with genetic tools: tissue-specific expression of sensors for membrane potential and intracellular pH, and RNAi-knockdown of mechanisms involved in ion exchange.
    Schotthöfer SK; Bohrmann J
    BMC Dev Biol; 2020 Jul; 20(1):15. PubMed ID: 32635900
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Toward Decoding Bioelectric Events in Xenopus Embryogenesis: New Methodology for Tracking Interplay Between Calcium and Resting Potentials In Vivo.
    McMillen P; Novak R; Levin M
    J Mol Biol; 2020 Jan; 432(2):605-620. PubMed ID: 31711960
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cracking the bioelectric code: Probing endogenous ionic controls of pattern formation.
    Tseng A; Levin M
    Commun Integr Biol; 2013 Jan; 6(1):e22595. PubMed ID: 23802040
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioelectric signaling in regeneration: Mechanisms of ionic controls of growth and form.
    McLaughlin KA; Levin M
    Dev Biol; 2018 Jan; 433(2):177-189. PubMed ID: 29291972
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.