These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

267 related articles for article (PubMed ID: 34476525)

  • 1. A sensitive photothermometric biosensor based on redox reaction-controlled nanoprobe conversion from Prussian blue to Prussian white.
    Zhang X; Rao H; Huang H; Zhang K; Wei M; Luo M; Xue X; Xue Z; Lu X
    Anal Bioanal Chem; 2021 Nov; 413(26):6627-6637. PubMed ID: 34476525
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prussian blue nanoparticles as peroxidase mimetics for sensitive colorimetric detection of hydrogen peroxide and glucose.
    Zhang W; Ma D; Du J
    Talanta; 2014 Mar; 120():362-7. PubMed ID: 24468383
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New photothermal immunoassay of human chorionic gonadotropin using Prussian blue nanoparticle-based photothermal conversion.
    Hong G; Zhang D; He Y; Yang Y; Chen P; Yang H; Zhou Z; Liu Y; Wang Y
    Anal Bioanal Chem; 2019 Oct; 411(26):6837-6845. PubMed ID: 31471682
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A feasible electrochemical biosensor for determination of glucose based on Prussian blue - Enzyme aggregates cascade catalytic system.
    Yan L; Miao K; Ma P; Ma X; Bi R; Chen F
    Bioelectrochemistry; 2021 Oct; 141():107838. PubMed ID: 34038858
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In situ deposition of Prussian blue on mesoporous carbon nanosphere for sensitive electrochemical immunoassay.
    Lai G; Zhang H; Yu A; Ju H
    Biosens Bioelectron; 2015 Dec; 74():660-5. PubMed ID: 26201983
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sparks fly between ascorbic acid and iron-based nanozymes: A study on Prussian blue nanoparticles.
    Zhang W; Wu Y; Dong HJ; Yin JJ; Zhang H; Wu HA; Song LN; Chong Y; Li ZX; Gu N; Zhang Y
    Colloids Surf B Biointerfaces; 2018 Mar; 163():379-384. PubMed ID: 29353215
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrochemical sensor based on Prussian blue/multi-walled carbon nanotubes functionalized polypyrrole nanowire arrays for hydrogen peroxide and microRNA detection.
    Yang L; Wang J; Lü H; Hui N
    Mikrochim Acta; 2021 Jan; 188(1):25. PubMed ID: 33404773
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An electrochemical biosensor based on the enhanced quasi-reversible redox signal of prussian blue generated by self-sacrificial label of iron metal-organic framework.
    Cui L; Hu J; Li CC; Wang CM; Zhang CY
    Biosens Bioelectron; 2018 Dec; 122():168-174. PubMed ID: 30265966
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An ultra-sensitive acetylcholinesterase biosensor based on reduced graphene oxide-Au nanoparticles-β-cyclodextrin/Prussian blue-chitosan nanocomposites for organophosphorus pesticides detection.
    Zhao H; Ji X; Wang B; Wang N; Li X; Ni R; Ren J
    Biosens Bioelectron; 2015 Mar; 65():23-30. PubMed ID: 25461134
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photothermal and colorimetric dual mode detection of nanomolar ferric ions in environmental sample based on in situ generation of prussian blue nanoparticles.
    Xue X; Gao M; Rao H; Luo M; Wang H; An P; Feng T; Lu X; Xue Z; Liu X
    Anal Chim Acta; 2020 Apr; 1105():197-207. PubMed ID: 32138919
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface Functionalized Prussian Blue-coated Nanostructured Nickel Oxide as a New Biosensor Platform for Catechol Detection.
    Roychoudhury A; Basu S; Jha SK
    Anal Sci; 2018; 34(10):1163-1169. PubMed ID: 30305593
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In Situ Generation of Prussian Blue by MIL-53 (Fe) for Point-of-Care Testing of Butyrylcholinesterase Activity Using a Portable High-Throughput Photothermal Device.
    Guo L; Zhang YJ; Yu YL; Wang JH
    Anal Chem; 2020 Nov; 92(21):14806-14813. PubMed ID: 33058681
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multicolor and photothermal dual-readout biosensor for visual detection of prostate specific antigen.
    Wei Y; Wang D; Zhang Y; Sui J; Xu Z
    Biosens Bioelectron; 2019 Sep; 140():111345. PubMed ID: 31150984
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Folic acid conjugated Prussian blue nanoparticles: Synthesis, physicochemical characterization and targeted cancer cell sensing.
    Akbal O; Bolat G; Yaman YT; Abaci S
    Colloids Surf B Biointerfaces; 2020 Mar; 187():110655. PubMed ID: 31837885
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Self-sacrificial label assisted electroactivity conversion of sensing interface for ultrasensitive electrochemical immunosensor.
    Yin S; Ma Z
    Biosens Bioelectron; 2019 Sep; 140():111355. PubMed ID: 31170656
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Visible photoelectrochemical sensing platform by in situ generated CdS quantum dots decorated branched-TiO
    Wang Y; Ge S; Zhang L; Yu J; Yan M; Huang J
    Biosens Bioelectron; 2017 Mar; 89(Pt 2):859-865. PubMed ID: 27818042
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prussian Blue (bio)sensing device for distance-based measurements.
    Granica M; Tymecki Ł
    Anal Chim Acta; 2020 Nov; 1136():125-133. PubMed ID: 33081936
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Self-powered biosensor for ascorbic acid with a Prussian blue electrochromic display.
    Zloczewska A; Celebanska A; Szot K; Tomaszewska D; Opallo M; Jönsson-Niedziolka M
    Biosens Bioelectron; 2014 Apr; 54():455-61. PubMed ID: 24321882
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biocatalysis-mediated MOF-to-prussian blue transformation enabling sensitive detection of NSCLC-associated miRNAs with dual-readout signals.
    Tang J; Liu L; Qin J; Lv X; Li J; Tang D; Zhuang J
    Biosens Bioelectron; 2022 Jun; 206():114139. PubMed ID: 35272213
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemical and electrochemical conversion of magnetic nanoparticles to Prussian blue for label-free and refreshment-enhanced electrochemical biosensing of enrofloxacin.
    Huang L; Zha S; Yu H; He Y; Li Y; Shen Y; Peng Y; Liu G; Fu Y
    Anal Chim Acta; 2022 Aug; 1221():340123. PubMed ID: 35934403
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.