These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
336 related articles for article (PubMed ID: 34476712)
1. Process optimization for acidic leaching of rare earth elements (REE) from waste electrical and electronic equipment (WEEE). Yuksekdag A; Kose-Mutlu B; Zeytuncu-Gokoglu B; Kumral M; Wiesner MR; Koyuncu I Environ Sci Pollut Res Int; 2022 Jan; 29(5):7772-7781. PubMed ID: 34476712 [TBL] [Abstract][Full Text] [Related]
2. Recovery opportunities of valuable and critical elements from WEEE treatment residues by hydrometallurgical processes. Marra A; Cesaro A; Belgiorno V Environ Sci Pollut Res Int; 2019 Jul; 26(19):19897-19905. PubMed ID: 31090011 [TBL] [Abstract][Full Text] [Related]
3. Electronic waste as a source of rare earth element pollution: Leaching, transport in porous media, and the effects of nanoparticles. Brewer A; Dror I; Berkowitz B Chemosphere; 2022 Jan; 287(Pt 2):132217. PubMed ID: 34826916 [TBL] [Abstract][Full Text] [Related]
4. Emerging technologies for the recovery of rare earth elements (REEs) from the end-of-life electronic wastes: a review on progress, challenges, and perspectives. Ambaye TG; Vaccari M; Castro FD; Prasad S; Rtimi S Environ Sci Pollut Res Int; 2020 Oct; 27(29):36052-36074. PubMed ID: 32617815 [TBL] [Abstract][Full Text] [Related]
5. Algal sorbents and prospects for their application in the sustainable recovery of rare earth elements from E-waste. Pinto J; Colónia J; Abdolvaseei A; Vale C; Henriques B; Pereira E Environ Sci Pollut Res Int; 2023 Jun; 30(30):74521-74543. PubMed ID: 37227641 [TBL] [Abstract][Full Text] [Related]
6. Toward the Circular Economy of Rare Earth Elements: A Review of Abundance, Extraction, Applications, and Environmental Impacts. Dang DH; Thompson KA; Ma L; Nguyen HQ; Luu ST; Duong MTN; Kernaghan A Arch Environ Contam Toxicol; 2021 Nov; 81(4):521-530. PubMed ID: 34170356 [TBL] [Abstract][Full Text] [Related]
7. Battery related cobalt and REE flows in WEEE treatment. Sommer P; Rotter VS; Ueberschaar M Waste Manag; 2015 Nov; 45():298-305. PubMed ID: 26054962 [TBL] [Abstract][Full Text] [Related]
8. Rare earth elements recovery from secondary wastes by solid-state chlorination and selective organic leaching. Pavón S; Lorenz T; Fortuny A; Sastre AM; Bertau M Waste Manag; 2021 Mar; 122():55-63. PubMed ID: 33486303 [TBL] [Abstract][Full Text] [Related]
9. Global demand for rare earth resources and strategies for green mining. Dutta T; Kim KH; Uchimiya M; Kwon EE; Jeon BH; Deep A; Yun ST Environ Res; 2016 Oct; 150():182-190. PubMed ID: 27295408 [TBL] [Abstract][Full Text] [Related]
10. Scalable and Consolidated Microbial Platform for Rare Earth Element Leaching and Recovery from Waste Sources. Good NM; Kang-Yun CS; Su MZ; Zytnick AM; Barber CC; Vu HN; Grace JM; Nguyen HH; Zhang W; Skovran E; Fan M; Park DM; Martinez-Gomez NC Environ Sci Technol; 2024 Jan; 58(1):570-579. PubMed ID: 38150661 [TBL] [Abstract][Full Text] [Related]
11. Rare-earth elements in the circular economy: The case of yttrium. Favot M; Massarutto A J Environ Manage; 2019 Jun; 240():504-510. PubMed ID: 30974293 [TBL] [Abstract][Full Text] [Related]
13. Biohydrometallurgy for Rare Earth Elements Recovery from Industrial Wastes. Castro L; Blázquez ML; González F; Muñoz JÁ Molecules; 2021 Oct; 26(20):. PubMed ID: 34684778 [TBL] [Abstract][Full Text] [Related]
14. Leaching of rare earth elements from fluorescent powder using the tea fungus Kombucha. Hopfe S; Flemming K; Lehmann F; Möckel R; Kutschke S; Pollmann K Waste Manag; 2017 Apr; 62():211-221. PubMed ID: 28223076 [TBL] [Abstract][Full Text] [Related]
15. A geological reconnaissance of electrical and electronic waste as a source for rare earth metals. Mueller SR; Wäger PA; Widmer R; Williams ID Waste Manag; 2015 Nov; 45():226-34. PubMed ID: 25957937 [TBL] [Abstract][Full Text] [Related]
16. Molding the future: Optimization of bioleaching of rare earth elements from electronic waste by Penicillium expansum and insights into its mechanism. Gonzalez Baez A; Muñoz LP; Timmermans MJ; Garelick H; Purchase D Bioresour Technol; 2024 Jun; 402():130750. PubMed ID: 38685515 [TBL] [Abstract][Full Text] [Related]
17. Potential hot spots contaminated with exogenous, rare earth elements originating from e-waste dismantling and recycling. Wang S; Xiong Z; Wang L; Yang X; Yan X; Li Y; Zhang C; Liang T Environ Pollut; 2022 Sep; 309():119717. PubMed ID: 35810987 [TBL] [Abstract][Full Text] [Related]
18. Biotechnological strategies for the recovery of valuable and critical raw materials from waste electrical and electronic equipment (WEEE) - A review. Işıldar A; van Hullebusch ED; Lenz M; Du Laing G; Marra A; Cesaro A; Panda S; Akcil A; Kucuker MA; Kuchta K J Hazard Mater; 2019 Jan; 362():467-481. PubMed ID: 30268020 [TBL] [Abstract][Full Text] [Related]
19. Green Approach for Rare Earth Element (REE) Recovery from Coal Fly Ash. Liu P; Zhao S; Xie N; Yang L; Wang Q; Wen Y; Chen H; Tang Y Environ Sci Technol; 2023 Apr; 57(13):5414-5423. PubMed ID: 36942728 [TBL] [Abstract][Full Text] [Related]
20. Determination of Metal Content of Waste Mobile Phones and Estimation of Their Recovery Potential in Turkey. Sahan M; Kucuker MA; Demirel B; Kuchta K; Hursthouse A Int J Environ Res Public Health; 2019 Mar; 16(5):. PubMed ID: 30862075 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]