These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
362 related articles for article (PubMed ID: 34476863)
1. Automated segmentation of biventricular contours in tissue phase mapping using deep learning. Shen D; Pathrose A; Sarnari R; Blake A; Berhane H; Baraboo JJ; Carr JC; Markl M; Kim D NMR Biomed; 2021 Dec; 34(12):e4606. PubMed ID: 34476863 [TBL] [Abstract][Full Text] [Related]
2. Optimizing Deep Learning for Cardiac MRI Segmentation: The Impact of Automated Slice Range Classification. Priya S; Dhruba DD; Perry SS; Aher PY; Gupta A; Nagpal P; Jacob M Acad Radiol; 2024 Feb; 31(2):503-513. PubMed ID: 37541826 [TBL] [Abstract][Full Text] [Related]
3. Reproducibility and observer variability of tissue phase mapping for the quantification of regional myocardial velocities. Lin K; Chowdhary V; Benzuly KH; Yancy CW; Lomasney JW; Rigolin VH; Anderson AS; Wilcox J; Carr J; Markl M Int J Cardiovasc Imaging; 2016 Aug; 32(8):1227-34. PubMed ID: 27116238 [TBL] [Abstract][Full Text] [Related]
4. Fully-automated global and segmental strain analysis of DENSE cardiovascular magnetic resonance using deep learning for segmentation and phase unwrapping. Ghadimi S; Auger DA; Feng X; Sun C; Meyer CH; Bilchick KC; Cao JJ; Scott AD; Oshinski JN; Ennis DB; Epstein FH J Cardiovasc Magn Reson; 2021 Mar; 23(1):20. PubMed ID: 33691739 [TBL] [Abstract][Full Text] [Related]
5. Automated segmentation of the left ventricle from MR cine imaging based on deep learning architecture. Qin W; Wu Y; Li S; Chen Y; Yang Y; Liu X; Zheng H; Liang D; Hu Z Biomed Phys Eng Express; 2020 Feb; 6(2):025009. PubMed ID: 33438635 [TBL] [Abstract][Full Text] [Related]
6. Automated left ventricular myocardium segmentation using 3D deeply supervised attention U-net for coronary computed tomography angiography; CT myocardium segmentation. Jun Guo B; He X; Lei Y; Harms J; Wang T; Curran WJ; Liu T; Jiang Zhang L; Yang X Med Phys; 2020 Apr; 47(4):1775-1785. PubMed ID: 32017118 [TBL] [Abstract][Full Text] [Related]
7. Evaluation of fully automated myocardial segmentation techniques in native and contrast-enhanced T1-mapping cardiovascular magnetic resonance images using fully convolutional neural networks. Farrag NA; Lochbihler A; White JA; Ukwatta E Med Phys; 2021 Jan; 48(1):215-226. PubMed ID: 33131085 [TBL] [Abstract][Full Text] [Related]
8. Fully automated segmentation of left ventricular scar from 3D late gadolinium enhancement magnetic resonance imaging using a cascaded multi-planar U-Net (CMPU-Net). Zabihollahy F; Rajchl M; White JA; Ukwatta E Med Phys; 2020 Apr; 47(4):1645-1655. PubMed ID: 31955415 [TBL] [Abstract][Full Text] [Related]
9. Fully Automatic initialization and segmentation of left and right ventricles for large-scale cardiac MRI using a deeply supervised network and 3D-ASM. Hu H; Pan N; Frangi AF Comput Methods Programs Biomed; 2023 Oct; 240():107679. PubMed ID: 37364366 [TBL] [Abstract][Full Text] [Related]
10. Automated segmentation of long and short axis DENSE cardiovascular magnetic resonance for myocardial strain analysis using spatio-temporal convolutional neural networks. Barbaroux H; Kunze KP; Neji R; Nazir MS; Pennell DJ; Nielles-Vallespin S; Scott AD; Young AA J Cardiovasc Magn Reson; 2023 Mar; 25(1):16. PubMed ID: 36991474 [TBL] [Abstract][Full Text] [Related]
11. Fully automated intracardiac 4D flow MRI post-processing using deep learning for biventricular segmentation. Corrado PA; Wentland AL; Starekova J; Dhyani A; Goss KN; Wieben O Eur Radiol; 2022 Aug; 32(8):5669-5678. PubMed ID: 35175379 [TBL] [Abstract][Full Text] [Related]
12. Deep learning based automated left ventricle segmentation and flow quantification in 4D flow cardiac MRI. Sun X; Cheng LH; Plein S; Garg P; van der Geest RJ J Cardiovasc Magn Reson; 2024; 26(1):100003. PubMed ID: 38211658 [TBL] [Abstract][Full Text] [Related]
13. Automated left and right ventricular chamber segmentation in cardiac magnetic resonance images using dense fully convolutional neural network. Penso M; Moccia S; Scafuri S; Muscogiuri G; Pontone G; Pepi M; Caiani EG Comput Methods Programs Biomed; 2021 Jun; 204():106059. PubMed ID: 33812305 [TBL] [Abstract][Full Text] [Related]
14. Automatic right ventricular segmentation for cine cardiac magnetic resonance images based on a new deep atlas network. Wang L; Su H; Liu P Med Phys; 2023 Nov; 50(11):7060-7070. PubMed ID: 37293874 [TBL] [Abstract][Full Text] [Related]
15. Evaluation of a Semi-automatic Right Ventricle Segmentation Method on Short-Axis MR Images. Yilmaz P; Wallecan K; Kristanto W; Aben JP; Moelker A J Digit Imaging; 2018 Oct; 31(5):670-679. PubMed ID: 29524154 [TBL] [Abstract][Full Text] [Related]
16. SAUN: Stack attention U-Net for left ventricle segmentation from cardiac cine magnetic resonance imaging. Sun X; Garg P; Plein S; van der Geest RJ Med Phys; 2021 Apr; 48(4):1750-1763. PubMed ID: 33544895 [TBL] [Abstract][Full Text] [Related]
17. Automatic prostate segmentation using deep learning on clinically diverse 3D transrectal ultrasound images. Orlando N; Gillies DJ; Gyacskov I; Romagnoli C; D'Souza D; Fenster A Med Phys; 2020 Jun; 47(6):2413-2426. PubMed ID: 32166768 [TBL] [Abstract][Full Text] [Related]
18. Deep learning for automatic volumetric segmentation of left ventricular myocardium and ischaemic scar from multi-slice late gadolinium enhancement cardiovascular magnetic resonance. Jani VP; Ostovaneh M; Chamera E; Kato Y; Lima JAC; Ambale-Venkatesh B Eur Heart J Cardiovasc Imaging; 2024 May; 25(6):829-838. PubMed ID: 38244222 [TBL] [Abstract][Full Text] [Related]
19. Evaluating Biventricular Myocardial Velocity and Interventricular Dyssynchrony in Adult Patients During the First Year After Heart Transplantation. Sarnari R; Blake AM; Ruh A; Abbasi MA; Pathrose A; Blaisdell J; Dolan RS; Ghafourian K; Wilcox JE; Khan SS; Vorovich EE; Rich JD; Anderson AS; Yancy CW; Carr JC; Markl M J Magn Reson Imaging; 2020 Sep; 52(3):920-929. PubMed ID: 32061045 [TBL] [Abstract][Full Text] [Related]
20. Cine MRI analysis by deep learning of optical flow: Adding the temporal dimension. Yan W; Wang Y; van der Geest RJ; Tao Q Comput Biol Med; 2019 Aug; 111():103356. PubMed ID: 31323604 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]