These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 34477249)

  • 1. Randomly Induced Phase Transformation in Silk Protein-Based Microlaser Arrays for Anticounterfeiting.
    Fan Y; Zhang C; Gao Z; Zhou W; Hou Y; Zhou Z; Yao J; Zhao YS
    Adv Mater; 2021 Oct; 33(42):e2102586. PubMed ID: 34477249
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gap-enhanced Raman tags for physically unclonable anticounterfeiting labels.
    Gu Y; He C; Zhang Y; Lin L; Thackray BD; Ye J
    Nat Commun; 2020 Jan; 11(1):516. PubMed ID: 31980613
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integrating biopolymer design with physical unclonable functions for anticounterfeiting and product traceability in agriculture.
    Sun H; Maji S; Chandrakasan AP; Marelli B
    Sci Adv; 2023 Mar; 9(12):eadf1978. PubMed ID: 36947609
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Femtosecond Laser Ablation of Quantum Dot Films toward Physical Unclonable Multilevel Fluorescent Anticounterfeiting Labels.
    Liang SY; Liu YF; Ji ZK; Xia H
    ACS Appl Mater Interfaces; 2023 Mar; 15(8):10986-10993. PubMed ID: 36692254
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unclonable Photonic Crystal Hydrogels with Controllable Encoding Capacity for Anticounterfeiting.
    Wu J; Li J; Liu X; Gong L; Chen J; Tang Z; Lin W; Mu Y; Lin X; Hong W; Yi G; Chen X
    ACS Appl Mater Interfaces; 2022 Jan; 14(1):2369-2380. PubMed ID: 34958565
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Array of a dye-doped polymer-based microlaser with multiwavelength emission.
    Yamashita K; Yanagi H; Oe K
    Opt Lett; 2011 May; 36(10):1875-7. PubMed ID: 21593920
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unclonable Perovskite Fluorescent Dots with Fingerprint Pattern for Multilevel Anticounterfeiting.
    Liu Y; Zheng Y; Zhu Y; Ma F; Zheng X; Yang K; Zheng X; Xu Z; Ju S; Zheng Y; Guo T; Qian L; Li F
    ACS Appl Mater Interfaces; 2020 Sep; 12(35):39649-39656. PubMed ID: 32698573
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wavelength-Tunable Single-Mode Microlasers Based on Photoresponsive Pitch Modulation of Liquid Crystals for Information Encryption.
    Xu FF; Gong ZL; Zhong YW; Yao J; Zhao YS
    Research (Wash D C); 2020; 2020():6539431. PubMed ID: 33623907
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Laser fabrication and evaluation of holographic intrinsic physical unclonable functions.
    Anastasiou A; Zacharaki EI; Tsakas A; Moustakas K; Alexandropoulos D
    Sci Rep; 2022 Feb; 12(1):2891. PubMed ID: 35190557
    [TBL] [Abstract][Full Text] [Related]  

  • 10. All-Inorganic Perovskite Nanorod Arrays with Spatially Randomly Distributed Lasing Modes for All-Photonic Cryptographic Primitives.
    Chen X; Wang K; Shi B; Liu T; Chen R; Zhang M; Wen W; Xing G; Wu J
    ACS Appl Mater Interfaces; 2021 Jul; 13(26):30891-30901. PubMed ID: 34156815
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spontaneous Formation of Random Wrinkles by Atomic Layer Infiltration for Anticounterfeiting.
    Chen G; Weng Y; Wang W; Hong D; Zhou L; Zhou X; Wu C; Zhang Y; Yan Q; Yao J; Guo T
    ACS Appl Mater Interfaces; 2021 Jun; 13(23):27548-27556. PubMed ID: 34060813
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Smart responsive organic microlasers with multiple emission states for high-security optical encryption.
    Gao Z; Wang K; Yan Y; Yao J; Zhao YS
    Natl Sci Rev; 2021 Feb; 8(2):nwaa162. PubMed ID: 34691572
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct Femtosecond Laser Printing of Silk Fibroin Microstructures.
    Santos MV; Paula KT; de Andrade MB; Gomes EM; Marques LF; Ribeiro SJL; Mendonça CR
    ACS Appl Mater Interfaces; 2020 Nov; 12(44):50033-50038. PubMed ID: 33090755
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photoluminescent and Chromic Nanomaterials for Anticounterfeiting Technologies: Recent Advances and Future Challenges.
    Abdollahi A; Roghani-Mamaqani H; Razavi B; Salami-Kalajahi M
    ACS Nano; 2020 Nov; 14(11):14417-14492. PubMed ID: 33079535
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Random Organic Nanolaser Arrays for Cryptographic Primitives.
    Feng J; Wen W; Wei X; Jiang X; Cao M; Wang X; Zhang X; Jiang L; Wu Y
    Adv Mater; 2019 Sep; 31(36):e1807880. PubMed ID: 31328840
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reconfigurable Optical Physical Unclonable Functions Enabled by VO
    Gan Z; Chen F; Li Q; Li M; Zhang J; Lu X; Tang L; Wang Z; Shi Q; Zhang W; Huang W
    ACS Appl Mater Interfaces; 2022 Feb; 14(4):5785-5796. PubMed ID: 35044155
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inkjet printing of silk nest arrays for cell hosting.
    Suntivich R; Drachuk I; Calabrese R; Kaplan DL; Tsukruk VV
    Biomacromolecules; 2014 Apr; 15(4):1428-35. PubMed ID: 24605757
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Random lasing and amplified spontaneous emission from silk inverse opals: Optical gain enhancement via protein scatterers.
    Umar M; Min K; Kim S; Kim S
    Sci Rep; 2019 Nov; 9(1):16266. PubMed ID: 31700045
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dyeing and Functionalization of Wearable Silk Fibroin/Cellulose Composite by Nanocolloidal Array.
    Yan D; Qiu L; Shea KJ; Meng Z; Xue M
    ACS Appl Mater Interfaces; 2019 Oct; 11(42):39163-39170. PubMed ID: 31441633
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phosphorylation of silk fibroins improves the cytocompatibility of silk fibroin derived materials: a platform for the production of tuneable material.
    Volkov V; Vasconcelos A; Sárria MP; Gomes AC; Cavaco-Paulo A
    Biotechnol J; 2014 Oct; 9(10):1267-78. PubMed ID: 25087614
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.