BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 34477482)

  • 1. Quantitative characterization of AEB pulses across the modern fleet.
    Graci V; Maltenfort M; Schneider M; Griffith M; Seacrist T; Arbogast KB
    Traffic Inj Prev; 2021; 22(sup1):S62-S67. PubMed ID: 34477482
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characteristics of automatic emergency braking responses in passenger vehicles evaluated in the IIHS front crash prevention program.
    Kidd DG; Perez-Rapela D; Jermakian JS
    Accid Anal Prev; 2023 Sep; 190():107150. PubMed ID: 37301163
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of automated versus manual emergency braking on rear seat adult and pediatric occupant precrash motion.
    Graci V; Douglas E; Seacrist T; Kerrigan J; Mansfield J; Bolte J; Sherony R; Hallman J; Arbogast KB
    Traffic Inj Prev; 2019; 20(sup1):S106-S111. PubMed ID: 31381438
    [No Abstract]   [Full Text] [Related]  

  • 4. Pediatric occupant human body model kinematic and kinetic response variation to changes in seating posture in simulated frontal impacts - with and without automatic emergency braking.
    Maheshwari J; Sarfare S; Falciani C; Belwadi A
    Traffic Inj Prev; 2020 Oct; 21(sup1):S49-S53. PubMed ID: 33095067
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Homogenization of vehicle fleet frontal crash pulses from 2000-2010.
    Locey CM; Garcia-Espana JF; Toh A; Belwadi A; Arbogast KB; Maltese MR
    Ann Adv Automot Med; 2012; 56():299-311. PubMed ID: 23169139
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characteristics of rear-end crashes involving passenger vehicles with automatic emergency braking.
    Cicchino JB; Zuby DS
    Traffic Inj Prev; 2019; 20(sup1):S112-S118. PubMed ID: 31381436
    [No Abstract]   [Full Text] [Related]  

  • 7. Simulating Automated Emergency Braking with and without Torricelli Vacuum Emergency Braking for cyclists: Effect of brake deceleration and sensor field-of-view on accidents, injuries and fatalities.
    Jeppsson H; Lubbe N
    Accid Anal Prev; 2020 Jul; 142():105538. PubMed ID: 32470821
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Developing an improved automatic preventive braking system based on safety-critical car-following events from naturalistic driving study data.
    Zhou W; Wang X; Glaser Y; Wu X; Xu X
    Accid Anal Prev; 2022 Dec; 178():106834. PubMed ID: 36150234
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Market penetration of intersection AEB: Characterizing avoided and residual straight crossing path accidents.
    Sander U; Lubbe N
    Accid Anal Prev; 2018 Jun; 115():178-188. PubMed ID: 29604516
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intersection AEB implementation strategies for left turn across path crashes.
    Sander U; Lubbe N; Pietzsch S
    Traffic Inj Prev; 2019; 20(sup1):S119-S125. PubMed ID: 31381448
    [No Abstract]   [Full Text] [Related]  

  • 11. Field testing the applicability of motorcycle autonomous emergency braking (MAEB) during pre-crash avoidance maneuver.
    Lucci C; Baldanzini N; Savino G
    Traffic Inj Prev; 2021; 22(3):246-251. PubMed ID: 33709844
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of the crash mitigation effect of low-speed automated emergency braking systems based on insurance claims data.
    Isaksson-Hellman I; Lindman M
    Traffic Inj Prev; 2016 Sep; 17 Suppl 1():42-7. PubMed ID: 27586101
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The potential of clustering methods to define intersection test scenarios: Assessing real-life performance of AEB.
    Sander U; Lubbe N
    Accid Anal Prev; 2018 Apr; 113():1-11. PubMed ID: 29355748
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Real life safety benefits of increasing brake deceleration in car-to-pedestrian accidents: Simulation of Vacuum Emergency Braking.
    Jeppsson H; Östling M; Lubbe N
    Accid Anal Prev; 2018 Feb; 111():311-320. PubMed ID: 29257980
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Estimated benefit of automated emergency braking systems for vehicle-pedestrian crashes in the United States.
    Haus SH; Sherony R; Gabler HC
    Traffic Inj Prev; 2019; 20(sup1):S171-S176. PubMed ID: 31381447
    [No Abstract]   [Full Text] [Related]  

  • 16. Forward collision warning system impact.
    Hubele N; Kennedy K
    Traffic Inj Prev; 2018; 19(sup2):S78-S83. PubMed ID: 30001148
    [TBL] [Abstract][Full Text] [Related]  

  • 17. AEB effectiveness evaluation based on car-to-cyclist accident reconstructions using video of drive recorder.
    Zhao Y; Ito D; Mizuno K
    Traffic Inj Prev; 2019; 20(1):100-106. PubMed ID: 30822153
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimization of vehicle deceleration to reduce occupant injury risks in frontal impact.
    Mizuno K; Itakura T; Hirabayashi S; Tanaka E; Ito D
    Traffic Inj Prev; 2014; 15(1):48-55. PubMed ID: 24279966
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Autonomous emergency braking systems adapted to snowy road conditions improve drivers' perceived safety and trust.
    Koglbauer I; Holzinger J; Eichberger A; Lex C
    Traffic Inj Prev; 2018 Apr; 19(3):332-337. PubMed ID: 29227692
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automatic Emergency Braking (AEB) System Impact on Fatality and Injury Reduction in China.
    Tan H; Zhao F; Hao H; Liu Z; Amer AA; Babiker H
    Int J Environ Res Public Health; 2020 Feb; 17(3):. PubMed ID: 32024226
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.