These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 34477610)

  • 21. Plasmon transmission through excitonic subwavelength gaps.
    Sukharev M; Nitzan A
    J Chem Phys; 2016 Apr; 144(14):144703. PubMed ID: 27083741
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The influence of edge and corner evolution on plasmon properties and resonant edge effect in gold nanoplatelets.
    Xu XB; Luo JS; Liu M; Wang YY; Yi Z; Li XB; Yi YG; Tang YJ
    Phys Chem Chem Phys; 2015 Jan; 17(4):2641-50. PubMed ID: 25500621
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Plasmon coupling in nanorod assemblies: optical absorption, discrete dipole approximation simulation, and exciton-coupling model.
    Jain PK; Eustis S; El-Sayed MA
    J Phys Chem B; 2006 Sep; 110(37):18243-53. PubMed ID: 16970442
    [TBL] [Abstract][Full Text] [Related]  

  • 24. On Plasmon Polariton Propagation Along Metallic Nano-Chain.
    Jacak WA
    Plasmonics; 2013; 8(3):1317-1333. PubMed ID: 23956703
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Logarithm Diameter Scaling and Carrier Density Independence of One-Dimensional Luttinger Liquid Plasmon.
    Wang S; Wu F; Zhao S; Watanabe K; Taniguchi T; Zhou C; Wang F
    Nano Lett; 2019 Apr; 19(4):2360-2365. PubMed ID: 30908062
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Photonic gas sensors exploiting directly the optical properties of hybrid carbon nanotube localized surface plasmon structures.
    Allsop T; Arif R; Neal R; Kalli K; Kundrát V; Rozhin A; Culverhouse P; Webb DJ
    Light Sci Appl; 2016 Feb; 5(2):e16036. PubMed ID: 30167146
    [TBL] [Abstract][Full Text] [Related]  

  • 27. In Vitro and In Vivo Evaluation of a Three-Dimensional Porous Multi-Walled Carbon Nanotube Scaffold for Bone Regeneration.
    Tanaka M; Sato Y; Zhang M; Haniu H; Okamoto M; Aoki K; Takizawa T; Yoshida K; Sobajima A; Kamanaka T; Kato H; Saito N
    Nanomaterials (Basel); 2017 Feb; 7(2):. PubMed ID: 28336879
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The coupling effects of surface plasmons and Fermi arc plasmons in Weyl semimetals.
    Bonačić Lošić Ž
    J Phys Condens Matter; 2019 Jul; 31(28):285001. PubMed ID: 30959499
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hybrid-Mode-Assisted Long-Distance Excitation of Short-Range Surface Plasmons in a Nanotip-Enhanced Step-Index Fiber.
    Tuniz A; Chemnitz M; Dellith J; Weidlich S; Schmidt MA
    Nano Lett; 2017 Feb; 17(2):631-637. PubMed ID: 27983862
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Coupling between gap plasmon polariton and magnetic polariton in a metallic-dielectric multilayer structure.
    Chen J; Wang P; Zhang ZM; Lu Y; Ming H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Aug; 84(2 Pt 2):026603. PubMed ID: 21929124
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Tailoring terahertz surface plasmon wave through free-standing multi-walled carbon nanotubes metasurface.
    Wang Y; Cui Z; Zhu D; Zhang X; Qian L
    Opt Express; 2018 Jun; 26(12):15343-15352. PubMed ID: 30114783
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Intersubband plasmons in the quantum limit in gated and aligned carbon nanotubes.
    Yanagi K; Okada R; Ichinose Y; Yomogida Y; Katsutani F; Gao W; Kono J
    Nat Commun; 2018 Mar; 9(1):1121. PubMed ID: 29549341
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Investigations of the interference of surface plasmons on rough silver surface by scanning plasmon near-field microscope.
    Konopsky VN; Kouyanov KE; Novikova NN
    Ultramicroscopy; 2001 Jul; 88(2):127-38. PubMed ID: 11419874
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Graphene/h-BN plasmon-phonon coupling and plasmon delocalization observed by infrared nano-spectroscopy.
    Barcelos ID; Cadore AR; Campos LC; Malachias A; Watanabe K; Taniguchi T; Maia FC; Freitas R; Deneke C
    Nanoscale; 2015 Jul; 7(27):11620-5. PubMed ID: 26091534
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Near-field optical imaging of plasmon modes in gold nanorods.
    Imura K; Nagahara T; Okamoto H
    J Chem Phys; 2005 Apr; 122(15):154701. PubMed ID: 15945650
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Exposure and emission measurements during production, purification, and functionalization of arc-discharge-produced multi-walled carbon nanotubes.
    Hedmer M; Isaxon C; Nilsson PT; Ludvigsson L; Messing ME; Genberg J; Skaug V; Bohgard M; Tinnerberg H; Pagels JH
    Ann Occup Hyg; 2014 Apr; 58(3):355-79. PubMed ID: 24389082
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Few-Wall Carbon Nanotube Coils.
    Nakar D; Gordeev G; Machado LD; Popovitz-Biro R; Rechav K; Oliveira EF; Kusch P; Jorio A; Galvão DS; Reich S; Joselevich E
    Nano Lett; 2020 Feb; 20(2):953-962. PubMed ID: 31869233
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Plasmon-enhanced Raman scattering by carbon nanotubes optically coupled with near-field cavities.
    Heeg S; Oikonomou A; Fernandez-Garcia R; Lehmann C; Maier SA; Vijayaraghavan A; Reich S
    Nano Lett; 2014; 14(4):1762-8. PubMed ID: 24605932
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Wireless Communication with Nanoplasmonic Data Carriers: Macroscale Propagation of Nanophotonic Plasmon Polaritons Probed by Near-Field Nanoimaging.
    Cohen M; Abulafia Y; Lev D; Lewis A; Shavit R; Zalevsky Z
    Nano Lett; 2017 Sep; 17(9):5181-5186. PubMed ID: 28467084
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Optimizing substrate-mediated plasmon coupling toward high-performance plasmonic nanowire waveguides.
    Zhang S; Xu H
    ACS Nano; 2012 Sep; 6(9):8128-35. PubMed ID: 22892010
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.