These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 34477659)

  • 1. In situ formation of grain boundaries on a supported hybrid to boost water oxidation activity of iridium oxide.
    Sun W; Wang Z; Tian X; Deng H; Liao J; Ma C; Yang J; Gong X; Huang W; Ge C
    Nanoscale; 2021 Aug; 13(32):13845-13857. PubMed ID: 34477659
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Grain Boundary Defect Engineering in Rutile Iridium Oxide Boosts Efficient and Stable Acidic Water Oxidation.
    Zhang N; Fan Y; Wang D; Yang H; Yu Y; Liu J; Zeng J; Bao D; Zhong H; Zhang X
    Chemistry; 2024 Jul; 30(38):e202400651. PubMed ID: 38705845
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assembly of a Highly Active Iridium-Based Oxide Oxygen Evolution Reaction Catalyst by Using Metal-Organic Framework Self-Dissolution.
    Sun W; Tian X; Liao J; Deng H; Ma C; Ge C; Yang J; Huang W
    ACS Appl Mater Interfaces; 2020 Jul; 12(26):29414-29423. PubMed ID: 32496754
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rational Manipulation of IrO
    Sun W; Zhou Z; Zaman WQ; Cao LM; Yang J
    ACS Appl Mater Interfaces; 2017 Dec; 9(48):41855-41862. PubMed ID: 29148711
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Supported IrO
    Wang Y; Zhao Z; Liang X; Zhao X; Wang X; Jana S; Wu YA; Zou Y; Li L; Chen H; Zou X
    Adv Mater; 2024 Sep; 36(39):e2407717. PubMed ID: 39113326
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chemical Epitaxy of Iridium Oxide on Tin Oxide Enhances Stability of Supported OER Catalyst.
    Kost M; Kornherr M; Zehetmaier P; Illner H; Jeon DS; Gasteiger H; Döblinger M; Fattakhova-Rohlfing D; Bein T
    Small; 2024 Oct; 20(42):e2404118. PubMed ID: 39165199
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nano-metal diborides-supported anode catalyst with strongly coupled TaO
    Wang Y; Zhang M; Kang Z; Shi L; Shen Y; Tian B; Zou Y; Chen H; Zou X
    Nat Commun; 2023 Aug; 14(1):5119. PubMed ID: 37612274
    [TBL] [Abstract][Full Text] [Related]  

  • 8. IrO
    Yan T; Chen S; Sun W; Liu Y; Pan L; Shi C; Zhang X; Huang ZF; Zou JJ
    ACS Appl Mater Interfaces; 2023 Feb; 15(5):6912-6922. PubMed ID: 36718123
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Iridium-Based Catalysts for Solid Polymer Electrolyte Electrocatalytic Water Splitting.
    Wang C; Lan F; He Z; Xie X; Zhao Y; Hou H; Guo L; Murugadoss V; Liu H; Shao Q; Gao Q; Ding T; Wei R; Guo Z
    ChemSusChem; 2019 Apr; 12(8):1576-1590. PubMed ID: 30656828
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Progress of Heterogeneous Iridium-Based Water Oxidation Catalysts.
    Gao J; Liu Y; Liu B; Huang KW
    ACS Nano; 2022 Nov; 16(11):17761-17777. PubMed ID: 36355040
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis and Activities of Rutile IrO2 and RuO2 Nanoparticles for Oxygen Evolution in Acid and Alkaline Solutions.
    Lee Y; Suntivich J; May KJ; Perry EE; Shao-Horn Y
    J Phys Chem Lett; 2012 Feb; 3(3):399-404. PubMed ID: 26285858
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recent Advances in Iridium-based Electrocatalysts for Acidic Electrolyte Oxidation.
    Li W; Bu Y; Ge X; Li F; Han GF; Baek JB
    ChemSusChem; 2024 Jul; 17(13):e202400295. PubMed ID: 38362788
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Highly dispersed Ir nanoparticles on Ti
    Fan M; Liu L; Li Y; Gu F; He X; Chen H
    J Colloid Interface Sci; 2025 Feb; 679(Pt A):676-685. PubMed ID: 39388953
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-Performance Supported Iridium Oxohydroxide Water Oxidation Electrocatalysts.
    Massué C; Pfeifer V; Huang X; Noack J; Tarasov A; Cap S; Schlögl R
    ChemSusChem; 2017 May; 10(9):1943-1957. PubMed ID: 28164475
    [TBL] [Abstract][Full Text] [Related]  

  • 15. One-Step Growth of Iron-Nickel Bimetallic Nanoparticles on FeNi Alloy Foils: Highly Efficient Advanced Electrodes for the Oxygen Evolution Reaction.
    Qazi UY; Yuan CZ; Ullah N; Jiang YF; Imran M; Zeb A; Zhao SJ; Javaid R; Xu AW
    ACS Appl Mater Interfaces; 2017 Aug; 9(34):28627-28634. PubMed ID: 28825790
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Innovative Strategies for Electrocatalytic Water Splitting.
    You B; Sun Y
    Acc Chem Res; 2018 Jul; 51(7):1571-1580. PubMed ID: 29537825
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Orientation-Dependent Oxygen Evolution Activities of Rutile IrO2 and RuO2.
    Stoerzinger KA; Qiao L; Biegalski MD; Shao-Horn Y
    J Phys Chem Lett; 2014 May; 5(10):1636-41. PubMed ID: 26270358
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Ir-OOOO-Ir transition state and the mechanism of the oxygen evolution reaction on IrO
    Binninger T; Doublet ML
    Energy Environ Sci; 2022 Jun; 15(6):2519-2528. PubMed ID: 36204599
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Grain Boundaries Boost Oxygen Evolution Reaction in NiFe Electrocatalysts.
    Park HK; Ahn H; Lee TH; Lee JY; Lee MG; Lee SA; Yang JW; Kim SJ; Ahn SH; Kim SY; Lee CH; Park ES; Jang HW
    Small Methods; 2021 Feb; 5(2):e2000755. PubMed ID: 34927882
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Progress of Nonprecious-Metal-Based Electrocatalysts for Oxygen Evolution in Acidic Media.
    Gao J; Tao H; Liu B
    Adv Mater; 2021 Aug; 33(31):e2003786. PubMed ID: 34169587
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.