These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 34477680)

  • 1. Evidence of band filling in PbS colloidal quantum dot square superstructures.
    Liu L; Septianto RD; Bisri SZ; Ishida Y; Aida T; Iwasa Y
    Nanoscale; 2021 Sep; 13(33):14001-14007. PubMed ID: 34477680
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unusual Surface Ligand Doping-Induced p-Type Quantum Dot Solids and Their Application in Solar Cells.
    Meng L; Xu Q; Thakur UK; Gong L; Zeng H; Shankar K; Wang X
    ACS Appl Mater Interfaces; 2020 Dec; 12(48):53942-53949. PubMed ID: 33211957
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantum-Confined and Enhanced Optical Absorption of Colloidal PbS Quantum Dots at Wavelengths with Expected Bulk Behavior.
    Debellis D; Gigli G; Ten Brinck S; Infante I; Giansante C
    Nano Lett; 2017 Feb; 17(2):1248-1254. PubMed ID: 28055216
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preventing interfacial recombination in colloidal quantum dot solar cells by doping the metal oxide.
    Ehrler B; Musselman KP; Böhm ML; Morgenstern FS; Vaynzof Y; Walker BJ; Macmanus-Driscoll JL; Greenham NC
    ACS Nano; 2013 May; 7(5):4210-20. PubMed ID: 23531107
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conduction Band Fine Structure in Colloidal HgTe Quantum Dots.
    Hudson MH; Chen M; Kamysbayev V; Janke EM; Lan X; Allan G; Delerue C; Lee B; Guyot-Sionnest P; Talapin DV
    ACS Nano; 2018 Sep; 12(9):9397-9404. PubMed ID: 30125488
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Revisiting the Valence and Conduction Band Size Dependence of PbS Quantum Dot Thin Films.
    Miller EM; Kroupa DM; Zhang J; Schulz P; Marshall AR; Kahn A; Lany S; Luther JM; Beard MC; Perkins CL; van de Lagemaat J
    ACS Nano; 2016 Mar; 10(3):3302-11. PubMed ID: 26895310
    [TBL] [Abstract][Full Text] [Related]  

  • 7. n-Doping of Quantum Dots by Lithium Ion Intercalation.
    Chang WJ; Park KY; Zhu Y; Wolverton C; Hersam MC; Weiss EA
    ACS Appl Mater Interfaces; 2020 Aug; 12(32):36523-36529. PubMed ID: 32666788
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simple cubic self-assembly of PbS quantum dots by finely controlled ligand removal through gel permeation chromatography.
    Liu J; Enomoto K; Takeda K; Inoue D; Pu YJ
    Chem Sci; 2021 Aug; 12(30):10354-10361. PubMed ID: 34377421
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Controlling the structures of organic semiconductor-quantum dot nanocomposites through ligand shell chemistry.
    Toolan DTW; Weir MP; Kilbride RC; Willmott JR; King SM; Xiao J; Greenham NC; Friend RH; Rao A; Jones RAL; Ryan AJ
    Soft Matter; 2020 Sep; 16(34):7970-7981. PubMed ID: 32766663
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Colloidal Synthesis Path to 2D Crystalline Quantum Dot Superlattices.
    Ondry JC; Philbin JP; Lostica M; Rabani E; Alivisatos AP
    ACS Nano; 2021 Feb; 15(2):2251-2262. PubMed ID: 33377761
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Scalable PbS Quantum Dot Solar Cell Production by Blade Coating from Stable Inks.
    Sukharevska N; Bederak D; Goossens VM; Momand J; Duim H; Dirin DN; Kovalenko MV; Kooi BJ; Loi MA
    ACS Appl Mater Interfaces; 2021 Feb; 13(4):5195-5207. PubMed ID: 33470785
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enabling Ambipolar to Heavy n-Type Transport in PbS Quantum Dot Solids through Doping with Organic Molecules.
    Nugraha MI; Kumagai S; Watanabe S; Sytnyk M; Heiss W; Loi MA; Takeya J
    ACS Appl Mater Interfaces; 2017 May; 9(21):18039-18045. PubMed ID: 28472887
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative Electrochemical Control over Optical Gain in Quantum-Dot Solids.
    Geuchies JJ; Brynjarsson B; Grimaldi G; Gudjonsdottir S; van der Stam W; Evers WH; Houtepen AJ
    ACS Nano; 2021 Jan; 15(1):377-386. PubMed ID: 33171052
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 3D superstructures with an orthorhombic lattice assembled by colloidal PbS quantum dots.
    Ushakova EV; Cherevkov SA; Litvin AP; Parfenov PS; Kasatkin IA; Fedorov AV; Gun'ko YK; Baranov AV
    Nanoscale; 2018 May; 10(17):8313-8319. PubMed ID: 29687825
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Directing Charge Transfer in Quantum Dot Assemblies.
    Bloom BP; Liu R; Zhang P; Ghosh S; Naaman R; Beratan DN; Waldeck DH
    Acc Chem Res; 2018 Oct; 51(10):2565-2573. PubMed ID: 30289241
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient exciton funneling in cascaded PbS quantum dot superstructures.
    Xu F; Ma X; Haughn CR; Benavides J; Doty MF; Cloutier SG
    ACS Nano; 2011 Dec; 5(12):9950-7. PubMed ID: 22085035
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantum dot size dependent J-V characteristics in heterojunction ZnO/PbS quantum dot solar cells.
    Gao J; Luther JM; Semonin OE; Ellingson RJ; Nozik AJ; Beard MC
    Nano Lett; 2011 Mar; 11(3):1002-8. PubMed ID: 21291196
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly Efficient Inverted Structural Quantum Dot Solar Cells.
    Wang R; Wu X; Xu K; Zhou W; Shang Y; Tang H; Chen H; Ning Z
    Adv Mater; 2018 Feb; 30(7):. PubMed ID: 29315851
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Control of the Redox Activity of PbS Quantum Dots by Tuning Electrostatic Interactions at the Quantum Dot/Solvent Interface.
    He C; Weinberg DJ; Nepomnyashchii AB; Lian S; Weiss EA
    J Am Chem Soc; 2016 Jul; 138(28):8847-54. PubMed ID: 27341608
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of Direct Solvent-Quantum Dot Interaction on the Optical Properties of Colloidal Monolayer WS
    Jin H; Baek B; Kim D; Wu F; Batteas JD; Cheon J; Son DH
    Nano Lett; 2017 Dec; 17(12):7471-7477. PubMed ID: 29076338
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.