These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 34477680)

  • 21. Passivation of PbS Quantum Dot Surface with l-Glutathione in Solid-State Quantum-Dot-Sensitized Solar Cells.
    Jumabekov AN; Cordes N; Siegler TD; Docampo P; Ivanova A; Fominykh K; Medina DD; Peter LM; Bein T
    ACS Appl Mater Interfaces; 2016 Feb; 8(7):4600-7. PubMed ID: 26771519
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Improvement in PbS-based Hybrid Bulk-Heterojunction Solar Cells through Band Alignment via Bismuth Doping in the Nanocrystals.
    Saha SK; Bera A; Pal AJ
    ACS Appl Mater Interfaces; 2015 Apr; 7(16):8886-93. PubMed ID: 25853277
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Photo-induced surface modification to improve the performance of lead sulfide quantum dot solar cell.
    Tulsani SR; Rath AK
    J Colloid Interface Sci; 2018 Jul; 522():120-125. PubMed ID: 29579563
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Sensitized solar cells with colloidal PbS-CdS core-shell quantum dots.
    Lai LH; Protesescu L; Kovalenko MV; Loi MA
    Phys Chem Chem Phys; 2014 Jan; 16(2):736-42. PubMed ID: 24270835
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Chemically Triggered Formation of Two-Dimensional Epitaxial Quantum Dot Superlattices.
    Walravens W; De Roo J; Drijvers E; Ten Brinck S; Solano E; Dendooven J; Detavernier C; Infante I; Hens Z
    ACS Nano; 2016 Jul; 10(7):6861-70. PubMed ID: 27383262
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Charge Transport in Trap-Sensitized Infrared PbS Quantum-Dot-Based Photoconductors: Pros and Cons.
    Maulu A; Navarro-Arenas J; Rodríguez-Cantó PJ; Sánchez-Royo JF; Abargues R; Suárez I; Martínez-Pastor JP
    Nanomaterials (Basel); 2018 Aug; 8(9):. PubMed ID: 30200230
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Charge-Transport Mechanisms in CuInSe
    Yun HJ; Lim J; Fuhr AS; Makarov NS; Keene S; Law M; Pietryga JM; Klimov VI
    ACS Nano; 2018 Dec; 12(12):12587-12596. PubMed ID: 30495927
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Exciton fine structure and spin relaxation in semiconductor colloidal quantum dots.
    Kim J; Wong CY; Scholes GD
    Acc Chem Res; 2009 Aug; 42(8):1037-46. PubMed ID: 19425542
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Diffusion-controlled synthesis of PbS and PbSe quantum dots with in situ halide passivation for quantum dot solar cells.
    Zhang J; Gao J; Miller EM; Luther JM; Beard MC
    ACS Nano; 2014 Jan; 8(1):614-22. PubMed ID: 24341705
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Reduced Carrier Recombination in PbS - CuInS2 Quantum Dot Solar Cells.
    Sun Z; Sitbon G; Pons T; Bakulin AA; Chen Z
    Sci Rep; 2015 May; 5():10626. PubMed ID: 26024021
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cost-Effective and Semi-Transparent PbS Quantum Dot Solar Cells Using Copper Electrodes.
    Tavakoli Dastjerdi H; Qi P; Fan Z; Tavakoli MM
    ACS Appl Mater Interfaces; 2020 Jan; 12(1):818-825. PubMed ID: 31820641
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Enhanced Passivation and Carrier Collection in Ink-Processed PbS Quantum Dot Solar Cells via a Supplementary Ligand Strategy.
    Yang X; Yang J; Ullah MI; Xia Y; Liang G; Wang S; Zhang J; Hsu HY; Song H; Tang J
    ACS Appl Mater Interfaces; 2020 Sep; 12(37):42217-42225. PubMed ID: 32805951
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Direct Measurement of Electronic Band Structure in Single Quantum Dots of Metal Chalcogenide Composites.
    Benetti D; Cui D; Zhao H; Rosei F; Vomiero A
    Small; 2018 Dec; 14(51):e1801668. PubMed ID: 30294898
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Oxygen Plasma-Induced p-Type Doping Improves Performance and Stability of PbS Quantum Dot Solar Cells.
    Tavakoli Dastjerdi H; Tavakoli R; Yadav P; Prochowicz D; Saliba M; Tavakoli MM
    ACS Appl Mater Interfaces; 2019 Jul; 11(29):26047-26052. PubMed ID: 31257844
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Hybrid Black Phosphorus/Zero-Dimensional Quantum Dot Phototransistors: Tunable Photodoping and Enhanced Photoresponsivity.
    Lee AY; Ra HS; Kwak DH; Jeong MH; Park JH; Kang YS; Chae WS; Lee JS
    ACS Appl Mater Interfaces; 2018 May; 10(18):16033-16040. PubMed ID: 29649868
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Charge generation in PbS quantum dot solar cells characterized by temperature-dependent steady-state photoluminescence.
    Gao J; Zhang J; van de Lagemaat J; Johnson JC; Beard MC
    ACS Nano; 2014 Dec; 8(12):12814-25. PubMed ID: 25485555
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Understanding charge transfer and recombination by interface engineering for improving the efficiency of PbS quantum dot solar cells.
    Ding C; Zhang Y; Liu F; Kitabatake Y; Hayase S; Toyoda T; Wang R; Yoshino K; Minemoto T; Shen Q
    Nanoscale Horiz; 2018 Jul; 3(4):417-429. PubMed ID: 32254129
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Controlling Superstructure-Property Relationships via Critical Casimir Assembly of Quantum Dots.
    Marino E; Balazs DM; Crisp RW; Hermida-Merino D; Loi MA; Kodger TE; Schall P
    J Phys Chem C Nanomater Interfaces; 2019 Jun; 123(22):13451-13457. PubMed ID: 31205576
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Synthetic Conditions for High-Accuracy Size Control of PbS Quantum Dots.
    Zhang J; Crisp RW; Gao J; Kroupa DM; Beard MC; Luther JM
    J Phys Chem Lett; 2015 May; 6(10):1830-3. PubMed ID: 26263256
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Photocatalytically Active Superstructures of Quantum Dots and Iron Porphyrins for Reduction of CO
    Lian S; Kodaimati MS; Weiss EA
    ACS Nano; 2018 Jan; 12(1):568-575. PubMed ID: 29298382
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.