These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 34477726)

  • 1. Single-molecule mechanical study of an autonomous artificial translational molecular motor beyond bridge-burning design.
    Hu X; Zhao X; Loh IY; Yan J; Wang Z
    Nanoscale; 2021 Aug; 13(31):13195-13207. PubMed ID: 34477726
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biomimetic Autonomous Enzymatic Nanowalker of High Fuel Efficiency.
    Liu M; Cheng J; Tee SR; Sreelatha S; Loh IY; Wang Z
    ACS Nano; 2016 Jun; 10(6):5882-90. PubMed ID: 27294366
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Highly Polyvalent DNA Motors Generate 100+ pN of Force via Autochemophoresis.
    Blanchard AT; Bazrafshan AS; Yi J; Eisman JT; Yehl KM; Bian T; Mugler A; Salaita K
    Nano Lett; 2019 Oct; 19(10):6977-6986. PubMed ID: 31402671
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Track-walking molecular motors: a new generation beyond bridge-burning designs.
    Wang Z; Hou R; Loh IY
    Nanoscale; 2019 May; 11(19):9240-9263. PubMed ID: 31062798
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Extract Motive Energy from Single-Molecule Trajectories.
    Hou R; Wang Z
    J Phys Chem B; 2022 Dec; 126(49):10460-10470. PubMed ID: 36459483
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Autonomous DNA molecular motor tailor-designed to navigate DNA origami surface for fast complex motion and advanced nanorobotics.
    Siti W; Too HL; Anderson T; Liu XR; Loh IY; Wang Z
    Sci Adv; 2023 Sep; 9(38):eadi8444. PubMed ID: 37738343
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Motility of an autonomous protein-based artificial motor that operates via a burnt-bridge principle.
    Korosec CS; Unksov IN; Surendiran P; Lyttleton R; Curmi PMG; Angstmann CN; Eichhorn R; Linke H; Forde NR
    Nat Commun; 2024 Feb; 15(1):1511. PubMed ID: 38396042
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Maximum directionality and systematic classification of molecular motors.
    Efremov A; Wang Z
    Phys Chem Chem Phys; 2011 Mar; 13(11):5159-70. PubMed ID: 21298157
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Force production of human cytoplasmic dynein is limited by its processivity.
    Brenner S; Berger F; Rao L; Nicholas MP; Gennerich A
    Sci Adv; 2020 Apr; 6(15):eaaz4295. PubMed ID: 32285003
    [TBL] [Abstract][Full Text] [Related]  

  • 10. "Turbo-Charged" DNA Motors with Optimized Sequence Enable Single-Molecule Nucleic Acid Sensing.
    Zhang L; Piranej S; Namazi A; Narum S; Salaita K
    Angew Chem Int Ed Engl; 2024 Mar; 63(13):e202316851. PubMed ID: 38214887
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Universal optimal working cycles of molecular motors.
    Efremov A; Wang Z
    Phys Chem Chem Phys; 2011 Apr; 13(13):6223-33. PubMed ID: 21359395
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioinspired laser-operated molecular locomotive.
    Wang Z
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Sep; 70(3 Pt 1):031903. PubMed ID: 15524545
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Applying torque to the Escherichia coli flagellar motor using magnetic tweezers.
    van Oene MM; Dickinson LE; Cross B; Pedaci F; Lipfert J; Dekker NH
    Sci Rep; 2017 Mar; 7():43285. PubMed ID: 28266562
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single-Molecule Analysis and Engineering of DNA Motors.
    Mohapatra S; Lin CT; Feng XA; Basu A; Ha T
    Chem Rev; 2020 Jan; 120(1):36-78. PubMed ID: 31661246
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamics of molecular motors with finite processivity on heterogeneous tracks.
    Kafri Y; Lubensky DK; Nelson DR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Apr; 71(4 Pt 1):041906. PubMed ID: 15903700
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Force Generation by Myosin Motors: A Structural Perspective.
    Robert-Paganin J; Pylypenko O; Kikuti C; Sweeney HL; Houdusse A
    Chem Rev; 2020 Jan; 120(1):5-35. PubMed ID: 31689091
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanochemical coupling and bi-phasic force-velocity dependence in the ultra-fast ring ATPase SpoIIIE.
    Liu N; Chistol G; Cui Y; Bustamante C
    Elife; 2018 Mar; 7():. PubMed ID: 29504934
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tunable DNA Origami Motors Translocate Ballistically Over μm Distances at nm/s Speeds.
    Bazrafshan A; Meyer TA; Su H; Brockman JM; Blanchard AT; Piranej S; Duan Y; Ke Y; Salaita K
    Angew Chem Int Ed Engl; 2020 Jun; 59(24):9514-9521. PubMed ID: 32017312
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ATP-Concentration- and Force-Dependent Chemomechanical Coupling of Kinesin Molecular Motors.
    Xie P; Guo SK; Chen H
    J Chem Inf Model; 2019 Jan; 59(1):360-372. PubMed ID: 30500195
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The bacteriophage straight phi29 portal motor can package DNA against a large internal force.
    Smith DE; Tans SJ; Smith SB; Grimes S; Anderson DL; Bustamante C
    Nature; 2001 Oct; 413(6857):748-52. PubMed ID: 11607035
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.