These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 34477756)

  • 1. Differences in SMA-like polymer architecture dictate the conformational changes exhibited by the membrane protein rhodopsin encapsulated in lipid nano-particles.
    Grime RL; Logan RT; Nestorow SA; Sridhar P; Edwards PC; Tate CG; Klumperman B; Dafforn TR; Poyner DR; Reeves PJ; Wheatley M
    Nanoscale; 2021 Aug; 13(31):13519-13528. PubMed ID: 34477756
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A comparison of SMA (styrene maleic acid) and DIBMA (di-isobutylene maleic acid) for membrane protein purification.
    Gulamhussein AA; Uddin R; Tighe BJ; Poyner DR; Rothnie AJ
    Biochim Biophys Acta Biomembr; 2020 Jul; 1862(7):183281. PubMed ID: 32209303
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of DIBMA Polymer Length on Lipid Nanodisc Formation and Membrane Protein Extraction.
    Ball LE; Riley LJ; Hadasha W; Pfukwa R; Smith CJI; Dafforn TR; Klumperman B
    Biomacromolecules; 2021 Feb; 22(2):763-772. PubMed ID: 33373193
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Single molecule binding of a ligand to a G-protein-coupled receptor in real time using fluorescence correlation spectroscopy, rendered possible by nano-encapsulation in styrene maleic acid lipid particles.
    Grime RL; Goulding J; Uddin R; Stoddart LA; Hill SJ; Poyner DR; Briddon SJ; Wheatley M
    Nanoscale; 2020 Jun; 12(21):11518-11525. PubMed ID: 32428052
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Membrane protein extraction and purification using partially-esterified SMA polymers.
    Hawkins OP; Jahromi CPT; Gulamhussein AA; Nestorow S; Bahra T; Shelton C; Owusu-Mensah QK; Mohiddin N; O'Rourke H; Ajmal M; Byrnes K; Khan M; Nahar NN; Lim A; Harris C; Healy H; Hasan SW; Ahmed A; Evans L; Vaitsopoulou A; Akram A; Williams C; Binding J; Thandi RK; Joby A; Guest A; Tariq MZ; Rasool F; Cavanagh L; Kang S; Asparuhov B; Jestin A; Dafforn TR; Simms J; Bill RM; Goddard AD; Rothnie AJ
    Biochim Biophys Acta Biomembr; 2021 Dec; 1863(12):183758. PubMed ID: 34480878
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of Cholesterol on the Structure and Composition of Glyco-DIBMA Lipid Particles.
    Lenz J; Larsen AH; Keller S; Luchini A
    Langmuir; 2023 Mar; 39(10):3569-3579. PubMed ID: 36854196
    [TBL] [Abstract][Full Text] [Related]  

  • 7. GPCR-styrene maleic acid lipid particles (GPCR-SMALPs): their nature and potential.
    Wheatley M; Charlton J; Jamshad M; Routledge SJ; Bailey S; La-Borde PJ; Azam MT; Logan RT; Bill RM; Dafforn TR; Poyner DR
    Biochem Soc Trans; 2016 Apr; 44(2):619-23. PubMed ID: 27068979
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An acid-compatible co-polymer for the solubilization of membranes and proteins into lipid bilayer-containing nanoparticles.
    Hall SCL; Tognoloni C; Charlton J; Bragginton ÉC; Rothnie AJ; Sridhar P; Wheatley M; Knowles TJ; Arnold T; Edler KJ; Dafforn TR
    Nanoscale; 2018 Jun; 10(22):10609-10619. PubMed ID: 29845165
    [TBL] [Abstract][Full Text] [Related]  

  • 9. GPCRs in the round: SMA-like copolymers and SMALPs as a platform for investigating GPCRs.
    Ayub H; Murray RJ; Kuyler GC; Napier-Khwaja F; Gunner J; Dafforn TR; Klumperman B; Poyner DR; Wheatley M
    Arch Biochem Biophys; 2024 Apr; 754():109946. PubMed ID: 38395122
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Styrene-maleic acid copolymer effects on the function of the GPCR rhodopsin in lipid nanoparticles.
    Szundi I; Pitch SG; Chen E; Farrens DL; Kliger DS
    Biophys J; 2021 Oct; 120(20):4337-4348. PubMed ID: 34509506
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A comparative characterisation of commercially available lipid-polymer nanoparticles formed from model membranes.
    Sawczyc H; Heit S; Watts A
    Eur Biophys J; 2023 Feb; 52(1-2):39-51. PubMed ID: 36786921
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Styrene maleic-acid lipid particles (SMALPs) into detergent or amphipols: An exchange protocol for membrane protein characterisation.
    Hesketh SJ; Klebl DP; Higgins AJ; Thomsen M; Pickles IB; Sobott F; Sivaprasadarao A; Postis VLG; Muench SP
    Biochim Biophys Acta Biomembr; 2020 May; 1862(5):183192. PubMed ID: 31945320
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lipid Dynamics in Diisobutylene-Maleic Acid (DIBMA) Lipid Particles in Presence of Sensory Rhodopsin II.
    Voskoboynikova N; Orekhov P; Bozdaganyan M; Kodde F; Rademacher M; Schowe M; Budke-Gieseking A; Brickwedde B; Psathaki OE; Mulkidjanian AY; Cosentino K; Shaitan KV; Steinhoff HJ
    Int J Mol Sci; 2021 Mar; 22(5):. PubMed ID: 33806280
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SMALPs Are Not Simply Nanodiscs: The Polymer-to-Lipid Ratios of Fractionated SMALPs Underline Their Heterogeneous Nature.
    Kamilar E; Bariwal J; Zheng W; Ma H; Liang H
    Biomacromolecules; 2023 Apr; 24(4):1819-1838. PubMed ID: 36947865
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Styrene/Maleic Acid Copolymers Form SMALPs by Pulling Lipid Patches out of the Lipid Bilayer.
    Orekhov PS; Bozdaganyan ME; Voskoboynikova N; Mulkidjanian AY; Steinhoff HJ; Shaitan KV
    Langmuir; 2019 Mar; 35(10):3748-3758. PubMed ID: 30773011
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of Styrene Maleic Acid Lipid Particles as a Tool for Studies of Phage-Host Interactions.
    de Jonge PA; Smit Sibinga DJC; Boright OA; Costa AR; Nobrega FL; Brouns SJJ; Dutilh BE
    J Virol; 2020 Nov; 94(23):. PubMed ID: 32938760
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanoscale Model System for the Human Myelin Sheath.
    Hoffmann M; Haselberger D; Hofmann T; Müller L; Janson K; Meister A; Das M; Vargas C; Keller S; Kastritis PL; Schmidt C; Hinderberger D
    Biomacromolecules; 2021 Sep; 22(9):3901-3912. PubMed ID: 34324309
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The use of styrene-maleic acid copolymer (SMA) for studies on T cell membrane rafts.
    Angelisová P; Ballek O; Sýkora J; Benada O; Čajka T; Pokorná J; Pinkas D; Hořejší V
    Biochim Biophys Acta Biomembr; 2019 Jan; 1861(1):130-141. PubMed ID: 30463696
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effectiveness of styrene-maleic acid (SMA) copolymers for solubilisation of integral membrane proteins from SMA-accessible and SMA-resistant membranes.
    Swainsbury DJK; Scheidelaar S; Foster N; van Grondelle R; Killian JA; Jones MR
    Biochim Biophys Acta Biomembr; 2017 Oct; 1859(10):2133-2143. PubMed ID: 28751090
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Membrane biology visualized in nanometer-sized discs formed by styrene maleic acid polymers.
    Esmaili M; Overduin M
    Biochim Biophys Acta Biomembr; 2018 Feb; 1860(2):257-263. PubMed ID: 29056560
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.