BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 34477793)

  • 1. Correlating in situ RHEED and XRD to study growth dynamics of polytypism in nanowires.
    Jakob J; Schroth P; Feigl L; Al Humaidi M; Al Hassan A; Davtyan A; Hauck D; Pietsch U; Baumbach T
    Nanoscale; 2021 Aug; 13(30):13095-13107. PubMed ID: 34477793
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative analysis of time-resolved RHEED during growth of vertical nanowires.
    Jakob J; Schroth P; Feigl L; Hauck D; Pietsch U; Baumbach T
    Nanoscale; 2020 Mar; 12(9):5471-5482. PubMed ID: 32083629
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Radial Growth of Self-Catalyzed GaAs Nanowires and the Evolution of the Liquid Ga-Droplet Studied by Time-Resolved in Situ X-ray Diffraction.
    Schroth P; Jakob J; Feigl L; Mostafavi Kashani SM; Vogel J; Strempfer J; Keller TF; Pietsch U; Baumbach T
    Nano Lett; 2018 Jan; 18(1):101-108. PubMed ID: 29283268
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The In situ growth of Nanostructures on Surfaces (INS) endstation of the ESRF BM32 beamline: a combined UHV-CVD and MBE reactor for in situ X-ray scattering investigations of growing nanoparticles and semiconductor nanowires.
    Cantelli V; Geaymond O; Ulrich O; Zhou T; Blanc N; Renaud G
    J Synchrotron Radiat; 2015 May; 22(3):688-700. PubMed ID: 25931085
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrical and Optical Properties of Au-Catalyzed GaAs Nanowires Grown on Si (111) Substrate by Molecular Beam Epitaxy.
    Wang CY; Hong YC; Ko ZJ; Su YW; Huang JH
    Nanoscale Res Lett; 2017 Dec; 12(1):290. PubMed ID: 28438011
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Machine-learning-assisted analysis of transition metal dichalcogenide thin-film growth.
    Kim HJ; Chong M; Rhee TG; Khim YG; Jung MH; Kim YM; Jeong HY; Choi BK; Chang YJ
    Nano Converg; 2023 Feb; 10(1):10. PubMed ID: 36806667
    [TBL] [Abstract][Full Text] [Related]  

  • 7. XRD Evaluation of Wurtzite Phase in MBE Grown Self-Catalyzed GaP Nanowires.
    Koval OY; Fedorov VV; Bolshakov AD; Eliseev IE; Fedina SV; Sapunov GA; Udovenko SA; Dvoretckaia LN; Kirilenko DA; Burkovsky RG; Mukhin IS
    Nanomaterials (Basel); 2021 Apr; 11(4):. PubMed ID: 33918690
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Real-Time Characterization Using in situ RHEED Transmission Mode and TEM for Investigation of the Growth Behaviour of Nanomaterials.
    Jo J; Tchoe Y; Yi GC; Kim M
    Sci Rep; 2018 Jan; 8(1):1694. PubMed ID: 29374190
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Temperature conditions for GaAs nanowire formation by Au-assisted molecular beam epitaxy.
    Tchernycheva M; Harmand JC; Patriarche G; Travers L; Cirlin GE
    Nanotechnology; 2006 Aug; 17(16):4025-30. PubMed ID: 21727532
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tuning the Surface Morphologies and Properties of ZnO Films by the Design of Interfacial Layer.
    Li Y; Wang HQ; Zhou H; Du D; Geng W; Lin D; Chen X; Zhan H; Zhou Y; Kang J
    Nanoscale Res Lett; 2017 Sep; 12(1):551. PubMed ID: 28952132
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of liquid indium in the structural purity of wurtzite InAs nanowires that grow on Si(111).
    Biermanns A; Dimakis E; Davydok A; Sasaki T; Geelhaar L; Takahasi M; Pietsch U
    Nano Lett; 2014 Dec; 14(12):6878-83. PubMed ID: 25400142
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evolution of polytypism in GaAs nanowires during growth revealed by time-resolved in situ x-ray diffraction.
    Schroth P; Köhl M; Hornung JW; Dimakis E; Somaschini C; Geelhaar L; Biermanns A; Bauer S; Lazarev S; Pietsch U; Baumbach T
    Phys Rev Lett; 2015 Feb; 114(5):055504. PubMed ID: 25699455
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Review: Geometric interpretation of reflection and transmission RHEED patterns.
    Hafez MA; Zayed MK; Elsayed-Ali HE
    Micron; 2022 Aug; 159():103286. PubMed ID: 35700687
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Growth of germanium nanowires on silicon(111) substrates by molecular beam epitaxy.
    Dau MT; Petit M; Watanabe A; Michez L; Mendez SO; Baghdad R; Le Thanh V; Coudreau C
    J Nanosci Nanotechnol; 2011 Oct; 11(10):9292-5. PubMed ID: 22400339
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pulsed laser deposition with simultaneous in situ real-time monitoring of optical spectroscopic ellipsometry and reflection high-energy electron diffraction.
    Gruenewald JH; Nichols J; Seo SS
    Rev Sci Instrum; 2013 Apr; 84(4):043902. PubMed ID: 23635204
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phase transition on the Si(001) clean surface prepared in UHV MBE chamber: a study by high-resolution STM and in situ RHEED.
    Arapkina LV; Yuryev VA; Chizh KV; Shevlyuga VM; Storojevyh MS; Krylova LA
    Nanoscale Res Lett; 2011 Mar; 6(1):218. PubMed ID: 21711733
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phase transformation of molecular beam epitaxy-grown nanometer-thick Gd₂O₃ and Y₂O₃ on GaN.
    Chang WH; Wu SY; Lee CH; Lai TY; Lee YJ; Chang P; Hsu CH; Huang TS; Kwo JR; Hong M
    ACS Appl Mater Interfaces; 2013 Feb; 5(4):1436-41. PubMed ID: 23360590
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Growth mode evolution during (100)-oriented β-Ga
    Cheng Z; Hanke M; Galazka Z; Trampert A
    Nanotechnology; 2018 Sep; 29(39):395705. PubMed ID: 29985160
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Novel Growth Method To Improve the Quality of GaAs Nanowires Grown by Ga-Assisted Chemical Beam Epitaxy.
    García Núñez C; Braña AF; López N; García BJ
    Nano Lett; 2018 Jun; 18(6):3608-3615. PubMed ID: 29739187
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Epitaxial Fe3Si films on GaAs(100) substrates by means of electron beam evaporation.
    Thomas J; Schumann J; Vinzelberg H; Arushanov E; Engelhard R; Schmidt OG; Gemming T
    Nanotechnology; 2009 Jun; 20(23):235604. PubMed ID: 19451681
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.