BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 34477827)

  • 1. Nutriepigenomics and chronic obstructive pulmonary disease: potential role of dietary and epigenetics factors in disease development and management.
    Marín-Hinojosa C; Eraso CC; Sanchez-Lopez V; Hernández LC; Otero-Candelera R; Lopez-Campos JL
    Am J Clin Nutr; 2021 Dec; 114(6):1894-1906. PubMed ID: 34477827
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diet and obstructive lung diseases.
    Romieu I; Trenga C
    Epidemiol Rev; 2001; 23(2):268-87. PubMed ID: 12192737
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chronic obstructive pulmonary disease - diagnosis and management of stable disease; a personalized approach to care, using the treatable traits concept based on clinical phenotypes. Position paper of the Czech Pneumological and Phthisiological Society.
    Zatloukal J; Brat K; Neumannova K; Volakova E; Hejduk K; Kocova E; Kudela O; Kopecky M; Plutinsky M; Koblizek V
    Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub; 2020 Dec; 164(4):325-356. PubMed ID: 33325455
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of Diet in Chronic Obstructive Pulmonary Disease Prevention and Treatment.
    Scoditti E; Massaro M; Garbarino S; Toraldo DM
    Nutrients; 2019 Jun; 11(6):. PubMed ID: 31208151
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unraveling the Pathogenesis of Asthma and Chronic Obstructive Pulmonary Disease Overlap: Focusing on Epigenetic Mechanisms.
    Chen YC; Chang YP; Huang KT; Hsu PY; Hsiao CC; Lin MC
    Cells; 2022 May; 11(11):. PubMed ID: 35681424
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Epigenetics in asthma and COPD.
    Kabesch M; Adcock IM
    Biochimie; 2012 Nov; 94(11):2231-41. PubMed ID: 22874820
    [TBL] [Abstract][Full Text] [Related]  

  • 7. COPD: balancing oxidants and antioxidants.
    Fischer BM; Voynow JA; Ghio AJ
    Int J Chron Obstruct Pulmon Dis; 2015; 10():261-76. PubMed ID: 25673984
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Current concepts on oxidative/carbonyl stress, inflammation and epigenetics in pathogenesis of chronic obstructive pulmonary disease.
    Yao H; Rahman I
    Toxicol Appl Pharmacol; 2011 Jul; 254(2):72-85. PubMed ID: 21296096
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of cigarette smoke-induced pulmonary vascular endothelial cell apoptosis in COPD.
    Song Q; Chen P; Liu XM
    Respir Res; 2021 Feb; 22(1):39. PubMed ID: 33546691
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel aspects of pathogenesis and regeneration mechanisms in COPD.
    Bagdonas E; Raudoniute J; Bruzauskaite I; Aldonyte R
    Int J Chron Obstruct Pulmon Dis; 2015; 10():995-1013. PubMed ID: 26082624
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Epigenetic Targets for Therapeutic Approaches in COPD and Asthma. Nutrigenomics – Possible or Illusive.
    Cherneva RV; Kostadinov D
    Folia Med (Plovdiv); 2019 Sep; 61(3):358-369. PubMed ID: 32337921
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oxidative, inflammatory, genetic, and epigenetic biomarkers associated with chronic obstructive pulmonary disorder.
    Aggarwal T; Wadhwa R; Thapliyal N; Sharma K; Rani V; Maurya PK
    J Cell Physiol; 2019 Mar; 234(3):2067-2082. PubMed ID: 30171697
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxidative stress and gene transcription in asthma and chronic obstructive pulmonary disease: antioxidant therapeutic targets.
    Rahman I
    Curr Drug Targets Inflamm Allergy; 2002 Sep; 1(3):291-315. PubMed ID: 14561194
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microbiome Links Cigarette Smoke-Induced Chronic Obstructive Pulmonary Disease and Dietary Fiber via the Gut-Lung Axis: A Narrative Review.
    Ding K; Chen J; Zhan W; Zhang S; Chen Y; Long S; Lei M
    COPD; 2021 Dec; 19(1):10-17. PubMed ID: 34963421
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Role of Nutrition in the Development and Management of Chronic Obstructive Pulmonary Disease.
    Heefner A; Simovic T; Mize K; Rodriguez-Miguelez P
    Nutrients; 2024 Apr; 16(8):. PubMed ID: 38674827
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Epigenetic Modifications and Therapy in Chronic Obstructive Pulmonary Disease (COPD): An Update Review.
    Zhang L; Valizadeh H; Alipourfard I; Bidares R; Aghebati-Maleki L; Ahmadi M
    COPD; 2020 Jun; 17(3):333-342. PubMed ID: 32558592
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Food Pyramid for Subjects with Chronic Obstructive Pulmonary Diseases.
    Rondanelli M; Faliva MA; Peroni G; Infantino V; Gasparri C; Iannello G; Perna S; Alalwan TA; Al-Thawadi S; Corsico AG
    Int J Chron Obstruct Pulmon Dis; 2020; 15():1435-1448. PubMed ID: 32606652
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MicroRNA-181c inhibits cigarette smoke-induced chronic obstructive pulmonary disease by regulating CCN1 expression.
    Du Y; Ding Y; Chen X; Mei Z; Ding H; Wu Y; Jie Z
    Respir Res; 2017 Aug; 18(1):155. PubMed ID: 28806967
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The importance of epigenetics in the development of chronic obstructive pulmonary disease.
    Sakao S; Tatsumi K
    Respirology; 2011 Oct; 16(7):1056-63. PubMed ID: 21824218
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of DNA methylation signatures on NF-κB and STAT3 pathway genes and TET activity in cigarette smoke extract-challenged cells/COPD exacerbation model in vitro.
    Kaur G; Batra S
    Cell Biol Toxicol; 2020 Oct; 36(5):459-480. PubMed ID: 32342329
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.