These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 34477919)

  • 41. The kinematics of paretic lower limb in aquatic gait with equipment in people with post-stroke hemiparesis.
    Pereira JA; de Souza KK; Pereira SM; Ruschel C; Hubert M; Michaelsen SM
    Clin Biomech (Bristol, Avon); 2019 Dec; 70():16-22. PubMed ID: 31382199
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A neuromechanics-based powered ankle exoskeleton to assist walking post-stroke: a feasibility study.
    Takahashi KZ; Lewek MD; Sawicki GS
    J Neuroeng Rehabil; 2015 Feb; 12():23. PubMed ID: 25889283
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Slow and faster post-stroke walkers have a different trunk progression and braking impulse during gait.
    Duclos NC; Duclos C; Nadeau S
    Gait Posture; 2019 Feb; 68():483-487. PubMed ID: 30616177
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Hemiparetic gait parameters in overground versus treadmill walking.
    Harris-Love ML; Forrester LW; Macko RF; Silver KH; Smith GV
    Neurorehabil Neural Repair; 2001; 15(2):105-12. PubMed ID: 11811252
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Locomotor Adaptability Task Promotes Intense and Task-Appropriate Output From the Paretic Leg During Walking.
    Clark DJ; Neptune RR; Behrman AL; Kautz SA
    Arch Phys Med Rehabil; 2016 Mar; 97(3):493-6. PubMed ID: 26525528
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The influence of merged muscle excitation modules on post-stroke hemiparetic walking performance.
    Allen JL; Kautz SA; Neptune RR
    Clin Biomech (Bristol, Avon); 2013 Jul; 28(6):697-704. PubMed ID: 23830138
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Immediate effect of lateral-wedged insole on stance and ambulation after stroke.
    Chen CH; Lin KH; Lu TW; Chai HM; Chen HL; Tang PF; Hu MH
    Am J Phys Med Rehabil; 2010 Jan; 89(1):48-55. PubMed ID: 19884813
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A unilateral robotic knee exoskeleton to assess the role of natural gait assistance in hemiparetic patients.
    Lora-Millan JS; Sanchez-Cuesta FJ; Romero JP; Moreno JC; Rocon E
    J Neuroeng Rehabil; 2022 Oct; 19(1):109. PubMed ID: 36209096
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The Presence of a Paretic Propulsion Reserve During Gait in Individuals Following Stroke.
    Lewek MD; Raiti C; Doty A
    Neurorehabil Neural Repair; 2018 Dec; 32(12):1011-1019. PubMed ID: 30558525
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Effectiveness of an 8-week overground walking with paretic lower limb loading on spatiotemporal gait parameters and motor function among chronic stroke survivors: a protocol for randomised controlled trial.
    Maje AU; Ibrahim AA
    Trials; 2023 Feb; 24(1):124. PubMed ID: 36803399
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Relationships between muscle activity and anteroposterior ground reaction forces in hemiparetic walking.
    Turns LJ; Neptune RR; Kautz SA
    Arch Phys Med Rehabil; 2007 Sep; 88(9):1127-35. PubMed ID: 17826457
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Varied movement errors drive learning of dynamic balance control during walking in people with incomplete spinal cord injury: a pilot study.
    Lin JT; Hsu CJ; Dee W; Chen D; Rymer WZ; Wu M
    Exp Brain Res; 2020 Apr; 238(4):981-993. PubMed ID: 32189042
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Robotic resistance/assistance training improves locomotor function in individuals poststroke: a randomized controlled study.
    Wu M; Landry JM; Kim J; Schmit BD; Yen SC; Macdonald J
    Arch Phys Med Rehabil; 2014 May; 95(5):799-806. PubMed ID: 24440365
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Effects of treadmill training with load addition on non-paretic lower limb on gait parameters after stroke: A randomized controlled clinical trial.
    Ribeiro TS; Silva EMGS; Silva IAP; Costa MFP; Cavalcanti FAC; Lindquist AR
    Gait Posture; 2017 May; 54():229-235. PubMed ID: 28351743
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Stance limb ground reaction forces in high functioning stroke and healthy subjects during gait initiation.
    Sharma S; McMorland AJ; Stinear JW
    Clin Biomech (Bristol, Avon); 2015 Aug; 30(7):689-95. PubMed ID: 26052068
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Ankle training with a robotic device improves hemiparetic gait after a stroke.
    Forrester LW; Roy A; Krebs HI; Macko RF
    Neurorehabil Neural Repair; 2011 May; 25(4):369-77. PubMed ID: 21115945
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Validity and Reproducibility of Inertial Physilog Sensors for Spatiotemporal Gait Analysis in Patients With Stroke.
    Lefeber N; Degelaen M; Truyers C; Safin I; Beckwee D
    IEEE Trans Neural Syst Rehabil Eng; 2019 Sep; 27(9):1865-1874. PubMed ID: 31352347
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Comparative Study on Overground Gait of Stroke Survivors With a Conventional Cane and a Haptic Cane.
    Lee H; Eizad A; Lee G; Afzal MR; Yoon J; Oh MK; Yoon J
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():2183-2192. PubMed ID: 34665734
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The effect of pelvic movements of a gait training system for stroke patients: a single blind, randomized, parallel study.
    Son C; Lee A; Lee J; Kim D; Kim SJ; Chun MH; Choi J
    J Neuroeng Rehabil; 2021 Dec; 18(1):185. PubMed ID: 34961541
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Robot-assisted walking vs overground walking in stroke patients: an evaluation of muscle activity.
    Coenen P; van Werven G; van Nunen MP; Van Dieën JH; Gerrits KH; Janssen TW
    J Rehabil Med; 2012 Apr; 44(4):331-7. PubMed ID: 22453772
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.