BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 34477940)

  • 1. Hexanal induces early apoptosis of Aspergillus flavus conidia by disrupting mitochondrial function and expression of key genes.
    Li SF; Zhang SB; Zhai HC; Lv YY; Hu YS; Cai JP
    Appl Microbiol Biotechnol; 2021 Sep; 105(18):6871-6886. PubMed ID: 34477940
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ( E)-2-Hexenal, as a Potential Natural Antifungal Compound, Inhibits Aspergillus flavus Spore Germination by Disrupting Mitochondrial Energy Metabolism.
    Ma W; Zhao L; Zhao W; Xie Y
    J Agric Food Chem; 2019 Jan; 67(4):1138-1145. PubMed ID: 30614691
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Natural food flavour (E)-2-hexenal, a potential antifungal agent, induces mitochondria-mediated apoptosis in Aspergillus flavus conidia via a ROS-dependent pathway.
    Ma W; Zhao L; Johnson ET; Xie Y; Zhang M
    Int J Food Microbiol; 2022 Jun; 370():109633. PubMed ID: 35313251
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcriptomics analyses and biochemical characterization of Aspergillus flavus spores exposed to 1-nonanol.
    Qin YL; Zhang SB; Lv YY; Zhai HC; Hu YS; Cai JP
    Appl Microbiol Biotechnol; 2022 Mar; 106(5-6):2091-2106. PubMed ID: 35179628
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcriptome analysis reveals the underlying mechanism of heptanal against Aspergillus flavus spore germination.
    Li SF; Zhang SB; Lv YY; Zhai HC; Hu YS; Cai JP
    Appl Microbiol Biotechnol; 2022 Feb; 106(3):1241-1255. PubMed ID: 35075519
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolomic analyses revealed multifaceted effects of hexanal on Aspergillus flavus growth.
    Li SF; Zhang SB; Lv YY; Zhai HC; Li N; Hu YS; Cai JP
    Appl Microbiol Biotechnol; 2021 May; 105(9):3745-3757. PubMed ID: 33880599
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanisms underlying the inhibitory effects of linalool on Aspergillus flavus spore germination.
    Li YN; Zhang SB; Lv YY; Zhai HC; Cai JP; Hu YS
    Appl Microbiol Biotechnol; 2022 Oct; 106(19-20):6625-6640. PubMed ID: 36097174
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Estragole Inhibits Growth and Aflatoxin Biosynthesis of
    Liang L; Zhang W; Hao J; Wang Y; Wei S; Zhang S; Hu Y; Lv Y
    Microbiol Spectr; 2023 Aug; 11(4):e0134823. PubMed ID: 37289093
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sub3 inhibits Aspergillus flavus growth by disrupting mitochondrial energy metabolism, and has potential biocontrol during peanut storage.
    Zhang W; Lv Y; Lv A; Wei S; Zhang S; Li C; Hu Y
    J Sci Food Agric; 2021 Jan; 101(2):486-496. PubMed ID: 32643802
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibitory effect and possible mechanism of phenyllactic acid on Aspergillus flavus spore germination.
    Li M; Yao B; Meng X
    J Basic Microbiol; 2022 Dec; 62(12):1457-1466. PubMed ID: 35925551
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The antifungal mechanisms of plant volatile compound 1-octanol against Aspergillus flavus growth.
    Qin YL; Zhang SB; Lv YY; Zhai HC; Hu YS; Cai JP
    Appl Microbiol Biotechnol; 2022 Aug; 106(13-16):5179-5196. PubMed ID: 35779097
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcriptomic analysis shows the antifungal mechanism of honokiol against Aspergillus flavus.
    Zhang W; Li B; Lv Y; Wei S; Zhang S; Hu Y
    Int J Food Microbiol; 2023 Jan; 384():109972. PubMed ID: 36279642
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Expression and purification of recombinant puroindoline A protein in Escherichia coli and its antifungal effect against Aspergillus flavus.
    Lv A; Li C; Tian P; Yuan W; Zhang S; Lv Y; Hu Y
    Appl Microbiol Biotechnol; 2019 Dec; 103(23-24):9515-9527. PubMed ID: 31720772
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antifungal activity of puroindoline protein from soft wheat against grain molds and its potential as a biocontrol agent.
    Tian PP; Lv YY; Wei S; Zhang SB; Zheng XT; Hu YS
    Lett Appl Microbiol; 2022 Jul; 75(1):114-125. PubMed ID: 35298847
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antifungal effects of carvacrol, the main volatile compound in Origanum vulgare L. essential oil, against Aspergillus flavus in postharvest wheat.
    Duan WY; Zhu XM; Zhang SB; Lv YY; Zhai HC; Wei S; Ma PA; Hu YS
    Int J Food Microbiol; 2024 Jan; 410():110514. PubMed ID: 38070224
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antifungal mechanism of 1-nonanol against Aspergillus flavus growth revealed by metabolomic analyses.
    Zhang SB; Qin YL; Li SF; Lv YY; Zhai HC; Hu YS; Cai JP
    Appl Microbiol Biotechnol; 2021 Oct; 105(20):7871-7888. PubMed ID: 34550439
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synergistic antifungal mechanism of cinnamaldehyde and nonanal against Aspergillus flavus and its application in food preservation.
    Zhang W; Li C; Lv Y; Wei S; Hu Y
    Food Microbiol; 2024 Aug; 121():104524. PubMed ID: 38637086
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanism of inactivation of Aspergillus flavus spores by dielectric barrier discharge plasma.
    Wang Y; Yu M; Xie Y; Ma W; Sun S; Li Q; Yang Y; Li X; Jia H; Zhao R
    Toxicon; 2024 Feb; 239():107615. PubMed ID: 38219915
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The potential of antifungal peptides derived from Lactiplantibacillus plantarum WYH for biocontrol of Aspergillus flavus contamination.
    Ou D; Zou Y; Zhang X; Jiao R; Zhang D; Ling N; Ye Y
    Int J Food Microbiol; 2024 Jun; 418():110727. PubMed ID: 38759292
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nerol-induced apoptosis associated with the generation of ROS and Ca
    Tian J; Gan Y; Pan C; Zhang M; Wang X; Tang X; Peng X
    Appl Microbiol Biotechnol; 2018 Aug; 102(15):6659-6672. PubMed ID: 29860589
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.