These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 34477982)

  • 21. A versatile micromodel technology to explore biofilm development in porous media flows.
    Papadopoulos C; Larue AE; Toulouze C; Mokhtari O; Lefort J; Libert E; Assémat P; Swider P; Malaquin L; Davit Y
    Lab Chip; 2024 Jan; 24(2):254-271. PubMed ID: 38059908
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Microscale geochemical gradients in Hanford 300 Area sediment biofilms and influence of uranium.
    Nguyen HD; Cao B; Mishra B; Boyanov MI; Kemner KM; Fredrickson JK; Beyenal H
    Water Res; 2012 Jan; 46(1):227-34. PubMed ID: 22078229
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biofilm development in a membrane-aerated biofilm reactor: effect of flow velocity on performance.
    Casey E; Glennon B; Hamer G
    Biotechnol Bioeng; 2000 Feb; 67(4):476-86. PubMed ID: 10620763
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The characteristics of the biofilm fixed inside porous medium by sequencing batch reactor.
    Hoshi K; Deguchi H
    Water Sci Technol; 2002; 46(1-2):261-5. PubMed ID: 12216634
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A novel computational simulation approach to study biofilm significance in a packed-bed biooxidation reactor.
    Abbasi M; Aminian-Dehkordi J; Mousavi SM
    Chemosphere; 2021 Jan; 262():127680. PubMed ID: 32763572
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Modeling multispecies biofilms including new bacterial species invasion.
    D'Acunto B; Frunzo L; Klapper I; Mattei MR
    Math Biosci; 2015 Jan; 259():20-6. PubMed ID: 25447810
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Calibration of hydrodynamic behavior and biokinetics for TOC removal modeling in biofilm reactors under different hydraulic conditions.
    Zeng M; Soric A; Roche N
    Bioresour Technol; 2013 Sep; 144():202-9. PubMed ID: 23871921
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mathematical modelling of biofilm structures.
    van Loosdrecht MC; Heijnen JJ; Eberl H; Kreft J; Picioreanu C
    Antonie Van Leeuwenhoek; 2002 Aug; 81(1-4):245-56. PubMed ID: 12448723
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of calcium on moving-bed biofilm reactor biofilms.
    Goode C; Allen DG
    Water Environ Res; 2011 Mar; 83(3):220-32. PubMed ID: 21466070
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Detachment of multi species biofilm in circulating fluidized bed bioreactor.
    Patel A; Nakhla G; Zhu J
    Biotechnol Bioeng; 2005 Nov; 92(4):427-37. PubMed ID: 16028296
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Hypothesis for the role of nutrient starvation in biofilm detachment.
    Hunt SM; Werner EM; Huang B; Hamilton MA; Stewart PS
    Appl Environ Microbiol; 2004 Dec; 70(12):7418-25. PubMed ID: 15574944
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Influence of detachment on substrate removal and microbial ecology in a heterotrophic/autotrophic biofilm.
    Elenter D; Milferstedt K; Zhang W; Hausner M; Morgenroth E
    Water Res; 2007 Dec; 41(20):4657-71. PubMed ID: 17655911
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Uranium immobilization by sulfate-reducing biofilms.
    Beyenal H; Sani RK; Peyton BM; Dohnalkova AC; Amonette JE; Lewandowski Z
    Environ Sci Technol; 2004 Apr; 38(7):2067-74. PubMed ID: 15112808
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mathematical modelling of biofilms and biofilm reactors for engineering design.
    Boltz JP; Morgenroth E; Sen D
    Water Sci Technol; 2010; 62(8):1821-36. PubMed ID: 20962398
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The porous structure induced heterogeneous and localized failure of the biofilm in microfluidic channels.
    Tang Y; Tao C; Zhang Z; Liu S; Dong F; Zhang D; Zhang J; Wang X
    Water Sci Technol; 2023 Dec; 88(12):3181-3193. PubMed ID: 38154803
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Simulation and experimental validation of a gradient feeding system for fast assessment of the kinetic behavior of a microbial consortium in a tubular biofilm reactor.
    Salazar-Huerta MA; Ruiz-Ordaz N; Galíndez-Mayer J; García-Mena J; Juárez-Ramírez C
    Bioprocess Biosyst Eng; 2019 Jan; 42(1):17-27. PubMed ID: 30238361
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Simultaneous Bioreduction of Multiple Oxidized Contaminants Using a Membrane Biofilm Reactor.
    Li H; Lin H; Xu X; Jiang M; Chang CC; Xia S
    Water Environ Res; 2017 Feb; 89(2):178-185. PubMed ID: 27196401
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The influence of biofilms on the migration of uranium in acid mine drainage (AMD) waters.
    Krawczyk-Bärsch E; Lünsdorf H; Arnold T; Brendler V; Eisbein E; Jenk U; Zimmermann U
    Sci Total Environ; 2011 Jul; 409(16):3059-65. PubMed ID: 21665018
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Uranium removal and microbial community in a H2-based membrane biofilm reactor.
    Zhou C; Ontiveros-Valencia A; Cornette de Saint Cyr L; Zevin AS; Carey SE; Krajmalnik-Brown R; Rittmann BE
    Water Res; 2014 Nov; 64():255-264. PubMed ID: 25073000
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Biofilm development and the dynamics of preferential flow paths in porous media.
    Bottero S; Storck T; Heimovaara TJ; van Loosdrecht MC; Enzien MV; Picioreanu C
    Biofouling; 2013; 29(9):1069-86. PubMed ID: 24028574
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.