BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 34478147)

  • 1. Method for Measurement of Antibody-Dependent Cellular Phagocytosis.
    Kamen L; Ordonia B; Myneni S; Chung S
    Methods Mol Biol; 2022; 2313():305-312. PubMed ID: 34478147
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel method for determining antibody-dependent cellular phagocytosis.
    Kamen L; Myneni S; Langsdorf C; Kho E; Ordonia B; Thakurta T; Zheng K; Song A; Chung S
    J Immunol Methods; 2019 May; 468():55-60. PubMed ID: 30880262
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of a novel reporter gene assay to evaluate antibody-dependent cellular phagocytosis for anti-CD20 therapeutic antibodies.
    Liu C; Yu C; Yang Y; Huang J; Yu X; Duan M; Wang L; Wang J
    Int Immunopharmacol; 2021 Nov; 100():108112. PubMed ID: 34521023
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An Fc engineering approach that modulates antibody-dependent cytokine release without altering cell-killing functions.
    Kinder M; Greenplate AR; Strohl WR; Jordan RE; Brezski RJ
    MAbs; 2015; 7(3):494-504. PubMed ID: 25933349
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Antibody dependent cellular phagocytosis (ADCP) and antibody dependent cellular cytotoxicity (ADCC) of breast cancer cells mediated by bispecific antibody, MDX-210.
    Watanabe M; Wallace PK; Keler T; Deo YM; Akewanlop C; Hayes DF
    Breast Cancer Res Treat; 1999 Feb; 53(3):199-207. PubMed ID: 10369066
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An Engineered Human Fc variant With Exquisite Selectivity for FcγRIIIa
    Kang TH; Lee CH; Delidakis G; Jung J; Richard-Le Goff O; Lee J; Kim JE; Charab W; Bruhns P; Georgiou G
    Front Immunol; 2019; 10():562. PubMed ID: 30984171
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protocol for the murine antibody-dependent cellular phagocytosis assay.
    Stanganello E; Brkic M; Zenner S; Beulshausen I; Schmitt U; Vascotto F
    Methods Cell Biol; 2023; 173():109-120. PubMed ID: 36653078
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancement of antibody-dependent cell-mediated cytotoxicity by endowing IgG with FcαRI (CD89) binding.
    Borrok MJ; Luheshi NM; Beyaz N; Davies GC; Legg JW; Wu H; Dall'Acqua WF; Tsui P
    MAbs; 2015; 7(4):743-51. PubMed ID: 25970007
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cellular Cytotoxicity of Next-Generation CD20 Monoclonal Antibodies.
    VanDerMeid KR; Elliott MR; Baran AM; Barr PM; Chu CC; Zent CS
    Cancer Immunol Res; 2018 Oct; 6(10):1150-1160. PubMed ID: 30089638
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Macrophage N-glycan processing inhibits antibody-dependent cellular phagocytosis.
    Díaz de León JSA; Aguilar I; Barb AW
    Glycobiology; 2023 Dec; 33(12):1182-1192. PubMed ID: 37792857
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential influence on antibody dependent cellular phagocytosis by different glycoforms on therapeutic Monoclonal antibodies.
    Kuhns S; Shu J; Xiang C; Guzman R; Zhang Q; Bretzlaff W; Miscalichi N; Kalenian K; Joubert M
    J Biotechnol; 2020 Jun; 317():5-15. PubMed ID: 32361021
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Immune Checkpoint Inhibition Overcomes ADCP-Induced Immunosuppression by Macrophages.
    Su S; Zhao J; Xing Y; Zhang X; Liu J; Ouyang Q; Chen J; Su F; Liu Q; Song E
    Cell; 2018 Oct; 175(2):442-457.e23. PubMed ID: 30290143
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of antibody glycosylation structures that predict monoclonal antibody Fc-effector function.
    Chung AW; Crispin M; Pritchard L; Robinson H; Gorny MK; Yu X; Bailey-Kellogg C; Ackerman ME; Scanlan C; Zolla-Pazner S; Alter G
    AIDS; 2014 Nov; 28(17):2523-30. PubMed ID: 25160934
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phagocytosis of breast cancer cells mediated by anti-MUC-1 monoclonal antibody, DF3, and its bispecific antibody.
    Akewanlop C; Watanabe M; Singh B; Walker M; Kufe DW; Hayes DF
    Cancer Res; 2001 May; 61(10):4061-5. PubMed ID: 11358826
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An engineered Fc variant of an IgG eliminates all immune effector functions via structural perturbations.
    Vafa O; Gilliland GL; Brezski RJ; Strake B; Wilkinson T; Lacy ER; Scallon B; Teplyakov A; Malia TJ; Strohl WR
    Methods; 2014 Jan; 65(1):114-26. PubMed ID: 23872058
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Macrophages are critical effectors of antibody therapies for cancer.
    Weiskopf K; Weissman IL
    MAbs; 2015; 7(2):303-10. PubMed ID: 25667985
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Macrophage hypophagia as a mechanism of innate immune exhaustion in mAb-induced cell clearance.
    Pinney JJ; Rivera-Escalera F; Chu CC; Whitehead HE; VanDerMeid KR; Nelson AM; Barbeau MC; Zent CS; Elliott MR
    Blood; 2020 Oct; 136(18):2065-2079. PubMed ID: 32556153
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antibody-Dependent Cellular Phagocytosis in Antiviral Immune Responses.
    Tay MZ; Wiehe K; Pollara J
    Front Immunol; 2019; 10():332. PubMed ID: 30873178
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Myeloid cells as effector cells for monoclonal antibody therapy of cancer.
    Braster R; O'Toole T; van Egmond M
    Methods; 2014 Jan; 65(1):28-37. PubMed ID: 23811299
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Humanised IgG1 antibody variants targeting membrane-bound carcinoembryonic antigen by antibody-dependent cellular cytotoxicity and phagocytosis.
    Ashraf SQ; Umana P; Mössner E; Ntouroupi T; Brünker P; Schmidt C; Wilding JL; Mortensen NJ; Bodmer WF
    Br J Cancer; 2009 Nov; 101(10):1758-68. PubMed ID: 19904275
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.