These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 34478313)

  • 41. Preparation of Neutrally-charged, pH-responsive Polymeric Nanoparticles for Cytosolic siRNA Delivery.
    Hendershot J; Smith AE; Werfel TA
    J Vis Exp; 2019 May; (147):. PubMed ID: 31107463
    [TBL] [Abstract][Full Text] [Related]  

  • 42. pH-responsive polymer-drug conjugates: Design and progress.
    Pang X; Jiang Y; Xiao Q; Leung AW; Hua H; Xu C
    J Control Release; 2016 Jan; 222():116-29. PubMed ID: 26704934
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Cytosolic delivery of membrane-impermeable molecules in dendritic cells using pH-responsive core-shell nanoparticles.
    Hu Y; Litwin T; Nagaraja AR; Kwong B; Katz J; Watson N; Irvine DJ
    Nano Lett; 2007 Oct; 7(10):3056-64. PubMed ID: 17887715
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Dual-responsive polyplexes with enhanced disassembly and endosomal escape for efficient delivery of siRNA.
    Zhu J; Qiao M; Wang Q; Ye Y; Ba S; Ma J; Hu H; Zhao X; Chen D
    Biomaterials; 2018 Apr; 162():47-59. PubMed ID: 29432988
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Rescue the retina after the ischemic injury by polymer-mediated intracellular superoxide dismutase delivery.
    Zhou X; Lv J; Li G; Qian T; Jiang H; Xu J; Cheng Y; Hong J
    Biomaterials; 2021 Jan; 268():120600. PubMed ID: 33360507
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Tailor-made dual pH-sensitive polymer-doxorubicin nanoparticles for efficient anticancer drug delivery.
    Du JZ; Du XJ; Mao CQ; Wang J
    J Am Chem Soc; 2011 Nov; 133(44):17560-3. PubMed ID: 21985458
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Microfluidic assembly of a nano-in-micro dual drug delivery platform composed of halloysite nanotubes and a pH-responsive polymer for colon cancer therapy.
    Li W; Liu D; Zhang H; Correia A; Mäkilä E; Salonen J; Hirvonen J; Santos HA
    Acta Biomater; 2017 Jan; 48():238-246. PubMed ID: 27815166
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Coordination polymer coated mesoporous silica nanoparticles for pH-responsive drug release.
    Xing L; Zheng H; Cao Y; Che S
    Adv Mater; 2012 Dec; 24(48):6433-7. PubMed ID: 23001882
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Stepwise pH-responsive nanoparticles for enhanced cellular uptake and on-demand intracellular release of doxorubicin.
    Chen WL; Li F; Tang Y; Yang SD; Li JZ; Yuan ZQ; Liu Y; Zhou XF; Liu C; Zhang XN
    Int J Nanomedicine; 2017; 12():4241-4256. PubMed ID: 28652730
    [TBL] [Abstract][Full Text] [Related]  

  • 50. [Advances in the study of tumor pH-responsive polymeric micelles for cancer drug targeting delivery].
    Xu JX; Tang JB; Zhao LH; Shen YQ
    Yao Xue Xue Bao; 2009 Dec; 44(12):1328-35. PubMed ID: 21351464
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Meticulous Doxorubicin Release from pH-Responsive Nanoparticles Entrapped within an Injectable Thermoresponsive Depot.
    Yu H; Ingram N; Rowley JV; Green DC; Thornton PD
    Chemistry; 2020 Oct; 26(59):13352-13358. PubMed ID: 32330327
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Hyaluronic Acid-Based pH-Sensitive Polymer-Modified Liposomes for Cell-Specific Intracellular Drug Delivery Systems.
    Miyazaki M; Yuba E; Hayashi H; Harada A; Kono K
    Bioconjug Chem; 2018 Jan; 29(1):44-55. PubMed ID: 29183110
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Redox and pH Dual Responsive Polymer Based Nanoparticles for In Vivo Drug Delivery.
    Ang CY; Tan SY; Teh C; Lee JM; Wong MF; Qu Q; Poh LQ; Li M; Zhang Y; Korzh V; Zhao Y
    Small; 2017 Feb; 13(7):. PubMed ID: 27918645
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Mechanisms of drug resistance reversal in Dox-resistant MCF-7 cells by pH-responsive amphiphilic polyphosphazene containing diisopropylamino side groups.
    Qiu L; Zheng C; Zhao Q
    Mol Pharm; 2012 May; 9(5):1109-17. PubMed ID: 22494535
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Photochemically triggered cytosolic drug delivery using pH-responsive hyaluronic acid nanoparticles for light-induced cancer therapy.
    Lee CS; Na K
    Biomacromolecules; 2014 Nov; 15(11):4228-38. PubMed ID: 25251731
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Advances in peptide-mediated cytosolic delivery of proteins.
    Sánchez-Navarro M
    Adv Drug Deliv Rev; 2021 Apr; 171():187-198. PubMed ID: 33561452
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Biodegradable nanoparticles for cytosolic delivery of therapeutics.
    Vasir JK; Labhasetwar V
    Adv Drug Deliv Rev; 2007 Aug; 59(8):718-28. PubMed ID: 17683826
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Dual pH-Responsive Shell-Cleavable Polycarbonate Micellar Nanoparticles for in Vivo Anticancer Drug Delivery.
    Liu S; Ono RJ; Yang C; Gao S; Ming Tan JY; Hedrick JL; Yang YY
    ACS Appl Mater Interfaces; 2018 Jun; 10(23):19355-19364. PubMed ID: 29757607
    [TBL] [Abstract][Full Text] [Related]  

  • 59. pH-responsive polymer assisted aptamer functionalized magnetic nanoparticles for specific recognition and adsorption of proteins.
    Zhao L; Li L; Zhu C; Ghulam M; Qu F
    Anal Chim Acta; 2020 Feb; 1097():161-168. PubMed ID: 31910956
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Controlling and quantifying the stability of amino acid-based cargo within polymeric delivery systems.
    Souery WN; Arun Kumar S; Prasca-Chamorro D; Moore DM; Good J; Bishop CJ
    J Control Release; 2019 Apr; 300():102-113. PubMed ID: 30826372
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.