These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 34478493)

  • 1. FRETraj: integrating single-molecule spectroscopy with molecular dynamics.
    Steffen FD; Sigel RKO; Börner R
    Bioinformatics; 2021 Nov; 37(21):3953-3955. PubMed ID: 34478493
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combining Graphical and Analytical Methods with Molecular Simulations To Analyze Time-Resolved FRET Measurements of Labeled Macromolecules Accurately.
    Peulen TO; Opanasyuk O; Seidel CAM
    J Phys Chem B; 2017 Sep; 121(35):8211-8241. PubMed ID: 28709377
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Contribution of fluorophore dynamics and solvation to resonant energy transfer in protein-DNA complexes: a molecular-dynamics study.
    Shoura MJ; Ranatunga RJKU; Harris SA; Nielsen SO; Levene SD
    Biophys J; 2014 Aug; 107(3):700-710. PubMed ID: 25099809
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DeepFRET, a software for rapid and automated single-molecule FRET data classification using deep learning.
    Thomsen J; Sletfjerding MB; Jensen SB; Stella S; Paul B; Malle MG; Montoya G; Petersen TC; Hatzakis NS
    Elife; 2020 Nov; 9():. PubMed ID: 33138911
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intramolecular distances and dynamics from the combined photon statistics of single-molecule FRET and photoinduced electron transfer.
    Haenni D; Zosel F; Reymond L; Nettels D; Schuler B
    J Phys Chem B; 2013 Oct; 117(42):13015-28. PubMed ID: 23718771
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dispersion Correction Alleviates Dye Stacking of Single-Stranded DNA and RNA in Simulations of Single-Molecule Fluorescence Experiments.
    Grotz KK; Nueesch MF; Holmstrom ED; Heinz M; Stelzl LS; Schuler B; Hummer G
    J Phys Chem B; 2018 Dec; 122(49):11626-11639. PubMed ID: 30285443
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protein folding transition path times from single molecule FRET.
    Chung HS; Eaton WA
    Curr Opin Struct Biol; 2018 Feb; 48():30-39. PubMed ID: 29080467
    [TBL] [Abstract][Full Text] [Related]  

  • 8. FRETpredict: a Python package for FRET efficiency predictions using rotamer libraries.
    Montepietra D; Tesei G; Martins JM; Kunze MBA; Best RB; Lindorff-Larsen K
    Commun Biol; 2024 Mar; 7(1):298. PubMed ID: 38461354
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Defining Dynamics of Membrane-Bound Pyrophosphatases by Experimental and Computational Single-Molecule FRET.
    Harborne SPD; Strauss J; Turku A; Watson MA; Tuma R; Harris SA; Goldman A
    Methods Enzymol; 2018; 607():93-130. PubMed ID: 30149870
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Directional Photonic Wire Mediated by Homo-Förster Resonance Energy Transfer on a DNA Origami Platform.
    Nicoli F; Barth A; Bae W; Neukirchinger F; Crevenna AH; Lamb DC; Liedl T
    ACS Nano; 2017 Nov; 11(11):11264-11272. PubMed ID: 29063765
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three-Color Single-Molecule FRET and Fluorescence Lifetime Analysis of Fast Protein Folding.
    Yoo J; Louis JM; Gopich IV; Chung HS
    J Phys Chem B; 2018 Dec; 122(49):11702-11720. PubMed ID: 30230835
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Indocyanine dyes approach free rotation at the 3' terminus of A-RNA: a comparison with the 5' terminus and consequences for fluorescence resonance energy transfer.
    Milas P; Gamari BD; Parrot L; Krueger BP; Rahmanseresht S; Moore J; Goldner LS
    J Phys Chem B; 2013 Jul; 117(29):8649-58. PubMed ID: 23799279
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unraveling multi-state molecular dynamics in single-molecule FRET experiments. I. Theory of FRET-lines.
    Barth A; Opanasyuk O; Peulen TO; Felekyan S; Kalinin S; Sanabria H; Seidel CAM
    J Chem Phys; 2022 Apr; 156(14):141501. PubMed ID: 35428384
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative Single-Molecule Three-Color Förster Resonance Energy Transfer by Photon Distribution Analysis.
    Barth A; Voith von Voithenberg L; Lamb DC
    J Phys Chem B; 2019 Aug; 123(32):6901-6916. PubMed ID: 31117611
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monte Carlo Diffusion-Enhanced Photon Inference: Distance Distributions and Conformational Dynamics in Single-Molecule FRET.
    Ingargiola A; Weiss S; Lerner E
    J Phys Chem B; 2018 Dec; 122(49):11598-11615. PubMed ID: 30252475
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fluorescence resonance energy transfer (FRET) and competing processes in donor-acceptor substituted DNA strands: a comparative study of ensemble and single-molecule data.
    Dietrich A; Buschmann V; Müller C; Sauer M
    J Biotechnol; 2002 Jan; 82(3):211-31. PubMed ID: 11999691
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Complete Kinetic Theory of FRET.
    Eilert T; Kallis E; Nagy J; Röcker C; Michaelis J
    J Phys Chem B; 2018 Dec; 122(49):11677-11694. PubMed ID: 30351105
    [TBL] [Abstract][Full Text] [Related]  

  • 18. FRET-guided modeling of nucleic acids.
    Steffen FD; Cunha RA; Sigel RKO; Börner R
    Nucleic Acids Res; 2024 Jun; ():. PubMed ID: 38869063
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of Brownian motion of fluorescent probes on measuring nanoscale distances by Förster resonance energy transfer.
    Badali D; Gradinaru CC
    J Chem Phys; 2011 Jun; 134(22):225102. PubMed ID: 21682537
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An atomistic view on carbocyanine photophysics in the realm of RNA.
    Steffen FD; Sigel RK; Börner R
    Phys Chem Chem Phys; 2016 Oct; 18(42):29045-29055. PubMed ID: 27783069
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.