BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 34478500)

  • 1. OPUS-X: an open-source toolkit for protein torsion angles, secondary structure, solvent accessibility, contact map predictions and 3D folding.
    Xu G; Wang Q; Ma J
    Bioinformatics; 2021 Dec; 38(1):108-114. PubMed ID: 34478500
    [TBL] [Abstract][Full Text] [Related]  

  • 2. OPUS-Rota4: a gradient-based protein side-chain modeling framework assisted by deep learning-based predictors.
    Xu G; Wang Q; Ma J
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34905769
    [TBL] [Abstract][Full Text] [Related]  

  • 3. OPUS-TASS: a protein backbone torsion angles and secondary structure predictor based on ensemble neural networks.
    Xu G; Wang Q; Ma J
    Bioinformatics; 2020 Dec; 36(20):5021-5026. PubMed ID: 32678893
    [TBL] [Abstract][Full Text] [Related]  

  • 4. OPUS-Fold3: a gradient-based protein all-atom folding and docking framework on TensorFlow.
    Xu G; Luo Z; Zhou R; Wang Q; Ma J
    Brief Bioinform; 2023 Sep; 24(6):. PubMed ID: 37833840
    [TBL] [Abstract][Full Text] [Related]  

  • 5. OPUS-Fold: An Open-Source Protein Folding Framework Based on Torsion-Angle Sampling.
    Xu G; Wang Q; Ma J
    J Chem Theory Comput; 2020 Jun; 16(6):3970-3976. PubMed ID: 32324993
    [TBL] [Abstract][Full Text] [Related]  

  • 6. OPUS-Refine: A Fast Sampling-Based Framework for Refining Protein Backbone Torsion Angles and Global Conformation.
    Xu G; Wang Q; Ma J
    J Chem Theory Comput; 2020 Feb; 16(2):1359-1366. PubMed ID: 31935088
    [TBL] [Abstract][Full Text] [Related]  

  • 7. pyconsFold: a fast and easy tool for modeling and docking using distance predictions.
    Lamb J; Elofsson A
    Bioinformatics; 2021 Nov; 37(21):3959-3960. PubMed ID: 34240102
    [TBL] [Abstract][Full Text] [Related]  

  • 8. OPUS-Rota3: Improving Protein Side-Chain Modeling by Deep Neural Networks and Ensemble Methods.
    Xu G; Wang Q; Ma J
    J Chem Inf Model; 2020 Dec; 60(12):6691-6697. PubMed ID: 33211480
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A de novo protein structure prediction by iterative partition sampling, topology adjustment and residue-level distance deviation optimization.
    Liu J; Zhao KL; He GX; Wang LJ; Zhou XG; Zhang GJ
    Bioinformatics; 2021 Dec; 38(1):99-107. PubMed ID: 34459867
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PconsFold: improved contact predictions improve protein models.
    Michel M; Hayat S; Skwark MJ; Sander C; Marks DS; Elofsson A
    Bioinformatics; 2014 Sep; 30(17):i482-8. PubMed ID: 25161237
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Explicit orientation dependence in empirical potentials and its significance to side-chain modeling.
    Ma J
    Acc Chem Res; 2009 Aug; 42(8):1087-96. PubMed ID: 19445451
    [TBL] [Abstract][Full Text] [Related]  

  • 12. IGPRED-MultiTask: A Deep Learning Model to Predict Protein Secondary Structure, Torsion Angles and Solvent Accessibility.
    Gormez Y; Aydin Z
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(2):1104-1113. PubMed ID: 35849663
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MMpred: a distance-assisted multimodal conformation sampling for de novo protein structure prediction.
    Zhao KL; Liu J; Zhou XG; Su JZ; Zhang Y; Zhang GJ
    Bioinformatics; 2021 Dec; 37(23):4350-4356. PubMed ID: 34185079
    [TBL] [Abstract][Full Text] [Related]  

  • 14. OPUS-Dom: applying the folding-based method VECFOLD to determine protein domain boundaries.
    Wu Y; Dousis AD; Chen M; Li J; Ma J
    J Mol Biol; 2009 Jan; 385(4):1314-29. PubMed ID: 19026662
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SSpro/ACCpro 6: almost perfect prediction of protein secondary structure and relative solvent accessibility using profiles, deep learning and structural similarity.
    Urban G; Magnan CN; Baldi P
    Bioinformatics; 2022 Mar; 38(7):2064-2065. PubMed ID: 35108364
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Developing structural profile matrices for protein secondary structure and solvent accessibility prediction.
    Aydin Z; Azginoglu N; Bilgin HI; Celik M
    Bioinformatics; 2019 Oct; 35(20):4004-4010. PubMed ID: 30937435
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SPOT-1D-Single: improving the single-sequence-based prediction of protein secondary structure, backbone angles, solvent accessibility and half-sphere exposures using a large training set and ensembled deep learning.
    Singh J; Litfin T; Paliwal K; Singh J; Hanumanthappa AK; Zhou Y
    Bioinformatics; 2021 Oct; 37(20):3464-3472. PubMed ID: 33983382
    [TBL] [Abstract][Full Text] [Related]  

  • 18. GDFuzz3D: a method for protein 3D structure reconstruction from contact maps, based on a non-Euclidean distance function.
    Pietal MJ; Bujnicki JM; Kozlowski LP
    Bioinformatics; 2015 Nov; 31(21):3499-505. PubMed ID: 26130575
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Current structure predictors are not learning the physics of protein folding.
    Outeiral C; Nissley DA; Deane CM
    Bioinformatics; 2022 Mar; 38(7):1881-1887. PubMed ID: 35099504
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improving prediction of protein secondary structure, backbone angles, solvent accessibility and contact numbers by using predicted contact maps and an ensemble of recurrent and residual convolutional neural networks.
    Hanson J; Paliwal K; Litfin T; Yang Y; Zhou Y
    Bioinformatics; 2019 Jul; 35(14):2403-2410. PubMed ID: 30535134
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.