These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 34478501)

  • 1. Deep Subspace Mutual Learning for cancer subtypes prediction.
    Yang B; Xin TT; Pang SM; Wang M; Wang YJ
    Bioinformatics; 2021 Nov; 37(21):3715-3722. PubMed ID: 34478501
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep structure integrative representation of multi-omics data for cancer subtyping.
    Yang B; Yang Y; Su X
    Bioinformatics; 2022 Jun; 38(13):3337-3342. PubMed ID: 35639657
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multi-omics clustering for cancer subtyping based on latent subspace learning.
    Ye X; Shang Y; Shi T; Zhang W; Sakurai T
    Comput Biol Med; 2023 Sep; 164():107223. PubMed ID: 37490833
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Subtype-MGTP: a cancer subtype identification framework based on multi-omics translation.
    Xie M; Kuang Y; Song M; Bao E
    Bioinformatics; 2024 Jun; 40(6):. PubMed ID: 38857453
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Subtype-DCC: decoupled contrastive clustering method for cancer subtype identification based on multi-omics data.
    Zhao J; Zhao B; Song X; Lyu C; Chen W; Xiong Y; Wei DQ
    Brief Bioinform; 2023 Mar; 24(2):. PubMed ID: 36702755
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Integrating Multi-Omic Data With Deep Subspace Fusion Clustering for Cancer Subtype Prediction.
    Yang B; Zhang Y; Pang S; Shang X; Zhao X; Han M
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(1):216-226. PubMed ID: 31689204
    [TBL] [Abstract][Full Text] [Related]  

  • 7. FGCNSurv: dually fused graph convolutional network for multi-omics survival prediction.
    Wen G; Li L
    Bioinformatics; 2023 Aug; 39(8):. PubMed ID: 37522887
    [TBL] [Abstract][Full Text] [Related]  

  • 8. GOAT: Gene-level biomarker discovery from multi-Omics data using graph ATtention neural network for eosinophilic asthma subtype.
    Jeong D; Koo B; Oh M; Kim TB; Kim S
    Bioinformatics; 2023 Oct; 39(10):. PubMed ID: 37740295
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MRGCN: cancer subtyping with multi-reconstruction graph convolutional network using full and partial multi-omics dataset.
    Yang B; Yang Y; Wang M; Su X
    Bioinformatics; 2023 Jun; 39(6):. PubMed ID: 37255323
    [TBL] [Abstract][Full Text] [Related]  

  • 10. HCNM: Heterogeneous Correlation Network Model for Multi-level Integrative Study of Multi-omics Data for Cancer Subtype Prediction.
    Vangimalla RR; Sreevalsan-Nair J
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():1880-1886. PubMed ID: 34891654
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integrative cancer patient stratification via subspace merging.
    Ding H; Sharpnack M; Wang C; Huang K; Machiraju R
    Bioinformatics; 2019 May; 35(10):1653-1659. PubMed ID: 30329022
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MCluster-VAEs: An end-to-end variational deep learning-based clustering method for subtype discovery using multi-omics data.
    Rong Z; Liu Z; Song J; Cao L; Yu Y; Qiu M; Hou Y
    Comput Biol Med; 2022 Nov; 150():106085. PubMed ID: 36162197
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Multiview Clustering Method With Low-Rank and Sparsity Constraints for Cancer Subtyping.
    Zhanpeng H; Jiekang W
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(6):3213-3223. PubMed ID: 34705654
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Autoencoder-assisted latent representation learning for survival prediction and multi-view clustering on multi-omics cancer subtyping.
    Zhu S; Wang W; Fang W; Cui M
    Math Biosci Eng; 2023 Nov; 20(12):21098-21119. PubMed ID: 38124589
    [TBL] [Abstract][Full Text] [Related]  

  • 15. moBRCA-net: a breast cancer subtype classification framework based on multi-omics attention neural networks.
    Choi JM; Chae H
    BMC Bioinformatics; 2023 Apr; 24(1):169. PubMed ID: 37101124
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Capturing the latent space of an Autoencoder for multi-omics integration and cancer subtyping.
    Madhumita ; Paul S
    Comput Biol Med; 2022 Sep; 148():105832. PubMed ID: 35834966
    [TBL] [Abstract][Full Text] [Related]  

  • 17. PIntMF: Penalized Integrative Matrix Factorization method for multi-omics data.
    Pierre-Jean M; Mauger F; Deleuze JF; Le Floch E
    Bioinformatics; 2022 Jan; 38(4):900-907. PubMed ID: 34849583
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tightly integrated multiomics-based deep tensor survival model for time-to-event prediction.
    Zhang JZ; Xu W; Hu P
    Bioinformatics; 2022 Jun; 38(12):3259-3266. PubMed ID: 35445698
    [TBL] [Abstract][Full Text] [Related]  

  • 19. COmic: convolutional kernel networks for interpretable end-to-end learning on (multi-)omics data.
    Ditz JC; Reuter B; Pfeifer N
    Bioinformatics; 2023 Jun; 39(39 Suppl 1):i76-i85. PubMed ID: 37387152
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fast dimension reduction and integrative clustering of multi-omics data using low-rank approximation: application to cancer molecular classification.
    Wu D; Wang D; Zhang MQ; Gu J
    BMC Genomics; 2015 Dec; 16():1022. PubMed ID: 26626453
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.