These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 34478644)

  • 1. Mechanosensory input during circuit formation shapes Drosophila motor behavior through patterned spontaneous network activity.
    Carreira-Rosario A; York RA; Choi M; Doe CQ; Clandinin TR
    Curr Biol; 2021 Dec; 31(23):5341-5349.e4. PubMed ID: 34478644
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A subset of interneurons required for Drosophila larval locomotion.
    Yoshikawa S; Long H; Thomas JB
    Mol Cell Neurosci; 2016 Jan; 70():22-9. PubMed ID: 26621406
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Sex-Specific VC Neurons Are Mechanically Activated Motor Neurons That Facilitate Serotonin-Induced Egg Laying in
    Kopchock RJ; Ravi B; Bode A; Collins KM
    J Neurosci; 2021 Apr; 41(16):3635-3650. PubMed ID: 33687965
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Homeostatic Feedback Modulates the Development of Two-State Patterned Activity in a Model Serotonin Motor Circuit in
    Ravi B; Garcia J; Collins KM
    J Neurosci; 2018 Jul; 38(28):6283-6298. PubMed ID: 29891728
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The development of motor coordination in Drosophila embryos.
    Crisp S; Evers JF; Fiala A; Bate M
    Development; 2008 Nov; 135(22):3707-17. PubMed ID: 18927150
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Circuit feedback increases activity level of a circuit input through interactions with intrinsic properties.
    Blitz DM
    J Neurophysiol; 2017 Aug; 118(2):949-963. PubMed ID: 28469000
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sequential addition of neuronal stem cell temporal cohorts generates a feed-forward circuit in the
    Wang YW; Wreden CC; Levy M; Meng JL; Marshall ZD; MacLean J; Heckscher E
    Elife; 2022 Jun; 11():. PubMed ID: 35723253
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of larval motor circuits in Drosophila.
    Kohsaka H; Okusawa S; Itakura Y; Fushiki A; Nose A
    Dev Growth Differ; 2012 Apr; 54(3):408-19. PubMed ID: 22524610
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic analysis of larval locomotion in Drosophila chordotonal organ mutants.
    Caldwell JC; Miller MM; Wing S; Soll DR; Eberl DF
    Proc Natl Acad Sci U S A; 2003 Dec; 100(26):16053-8. PubMed ID: 14673076
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neuromuscular basis of
    Cooney PC; Huang Y; Li W; Perera DM; Hormigo R; Tabachnik T; Godage IS; Hillman EMC; Grueber WB; Zarin AA
    Proc Natl Acad Sci U S A; 2023 Dec; 120(51):e2303641120. PubMed ID: 38096410
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pharmacological identification of cholinergic receptor subtypes: modulation of locomotion and neural circuit excitability in Drosophila larvae.
    Malloy CA; Somasundaram E; Omar A; Bhutto U; Medley M; Dzubuk N; Cooper RL
    Neuroscience; 2019 Jul; 411():47-64. PubMed ID: 31102763
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Early development of respiratory motor circuits in larval zebrafish (Danio rerio).
    McArthur KL; Tovar VM; Griffin-Baldwin E; Tovar BD; Astad EK
    J Comp Neurol; 2023 Jun; 531(8):838-852. PubMed ID: 36881713
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of sensory experience in functional development of Drosophila motor circuits.
    Fushiki A; Kohsaka H; Nose A
    PLoS One; 2013; 8(4):e62199. PubMed ID: 23620812
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Homeostatic Activity-Dependent Tuning of Recurrent Networks for Robust Propagation of Activity.
    Gjorgjieva J; Evers JF; Eglen SJ
    J Neurosci; 2016 Mar; 36(13):3722-34. PubMed ID: 27030758
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pupal behavior emerges from unstructured muscle activity in response to neuromodulation in
    Elliott AD; Berndt A; Houpert M; Roy S; Scott RL; Chow CC; Shroff H; White BH
    Elife; 2021 Jul; 10():. PubMed ID: 34236312
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anatomical and genotype-specific mechanosensory responses in Drosophila melanogaster larvae.
    Titlow JS; Rice J; Majeed ZR; Holsopple E; Biecker S; Cooper RL
    Neurosci Res; 2014 Jun; 83():54-63. PubMed ID: 24768745
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanosensory bristles mediate avoidance behavior by triggering sustained local motor activity in Drosophila melanogaster.
    Medeiros AM; Hobbiss AF; Borges G; Moita M; Mendes CS
    Curr Biol; 2024 Jul; 34(13):2812-2830.e5. PubMed ID: 38861987
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neural Substrates of Drosophila Larval Anemotaxis.
    Jovanic T; Winding M; Cardona A; Truman JW; Gershow M; Zlatic M
    Curr Biol; 2019 Feb; 29(4):554-566.e4. PubMed ID: 30744969
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Origin of wiring specificity in an olfactory map revealed by neuron type-specific, time-lapse imaging of dendrite targeting.
    Wong KKL; Li T; Fu TM; Liu G; Lyu C; Kohani S; Xie Q; Luginbuhl DJ; Upadhyayula S; Betzig E; Luo L
    Elife; 2023 Mar; 12():. PubMed ID: 36975203
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural and Functional Synaptic Plasticity Induced by Convergent Synapse Loss in the
    Wang Y; Lobb-Rabe M; Ashley J; Anand V; Carrillo RA
    J Neurosci; 2021 Feb; 41(7):1401-1417. PubMed ID: 33402422
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.