These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

589 related articles for article (PubMed ID: 34478922)

  • 1. EEG feature fusion for motor imagery: A new robust framework towards stroke patients rehabilitation.
    Al-Qazzaz NK; Alyasseri ZAA; Abdulkareem KH; Ali NS; Al-Mhiqani MN; Guger C
    Comput Biol Med; 2021 Oct; 137():104799. PubMed ID: 34478922
    [TBL] [Abstract][Full Text] [Related]  

  • 2. EEG Signal Complexity Measurements to Enhance BCI-Based Stroke Patients' Rehabilitation.
    Al-Qazzaz NK; Aldoori AA; Ali SHBM; Ahmad SA; Mohammed AK; Mohyee MI
    Sensors (Basel); 2023 Apr; 23(8):. PubMed ID: 37112230
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A flexible analytic wavelet transform based approach for motor-imagery tasks classification in BCI applications.
    Chaudhary S; Taran S; Bajaj V; Siuly S
    Comput Methods Programs Biomed; 2020 Apr; 187():105325. PubMed ID: 31964514
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel method for classification of multi-class motor imagery tasks based on feature fusion.
    Hou Y; Chen T; Lun X; Wang F
    Neurosci Res; 2022 Mar; 176():40-48. PubMed ID: 34508756
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Review on motor imagery based BCI systems for upper limb post-stroke neurorehabilitation: From designing to application.
    Khan MA; Das R; Iversen HK; Puthusserypady S
    Comput Biol Med; 2020 Aug; 123():103843. PubMed ID: 32768038
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Promotoer, a brain-computer interface-assisted intervention to promote upper limb functional motor recovery after stroke: a study protocol for a randomized controlled trial to test early and long-term efficacy and to identify determinants of response.
    Mattia D; Pichiorri F; Colamarino E; Masciullo M; Morone G; Toppi J; Pisotta I; Tamburella F; Lorusso M; Paolucci S; Puopolo M; Cincotti F; Molinari M
    BMC Neurol; 2020 Jun; 20(1):254. PubMed ID: 32593293
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Motor Imagery based Brain Computer Interface Paradigm for Upper Limb Stroke Rehabilitation.
    Petersen J; Iversen HK; Puthusserypady S
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():1960-1963. PubMed ID: 30440782
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An EEG channel selection method for motor imagery based brain-computer interface and neurofeedback using Granger causality.
    Varsehi H; Firoozabadi SMP
    Neural Netw; 2021 Jan; 133():193-206. PubMed ID: 33220643
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CSP-TSM: Optimizing the performance of Riemannian tangent space mapping using common spatial pattern for MI-BCI.
    Kumar S; Mamun K; Sharma A
    Comput Biol Med; 2017 Dec; 91():231-242. PubMed ID: 29100117
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of EEG measurement of upper limb movement in motor imagery training system.
    Suwannarat A; Pan-Ngum S; Israsena P
    Biomed Eng Online; 2018 Aug; 17(1):103. PubMed ID: 30071853
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Motor imagery EEG classification based on ensemble support vector learning.
    Luo J; Gao X; Zhu X; Wang B; Lu N; Wang J
    Comput Methods Programs Biomed; 2020 Sep; 193():105464. PubMed ID: 32283387
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Randomized Controlled Trial of EEG-Based Motor Imagery Brain-Computer Interface Robotic Rehabilitation for Stroke.
    Ang KK; Chua KS; Phua KS; Wang C; Chin ZY; Kuah CW; Low W; Guan C
    Clin EEG Neurosci; 2015 Oct; 46(4):310-20. PubMed ID: 24756025
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stockwell transform and semi-supervised feature selection from deep features for classification of BCI signals.
    Salimpour S; Kalbkhani H; Seyyedi S; Solouk V
    Sci Rep; 2022 Jul; 12(1):11773. PubMed ID: 35817814
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of subject-independent and subject-specific EEG-based BCI using LDA and SVM classifiers.
    Dos Santos EM; San-Martin R; Fraga FJ
    Med Biol Eng Comput; 2023 Mar; 61(3):835-845. PubMed ID: 36626112
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Graph-Based Feature Extraction Algorithm Towards a Robust Data Fusion Framework for Brain-Computer Interfaces.
    Zhu S; Hosni SI; Huang X; Borgheai SB; McLinden J; Shahriari Y; Ostadabbas S
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():878-881. PubMed ID: 34891430
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Study of MI-BCI classification method based on the Riemannian transform of personalized EEG spatiotemporal features.
    Ding X; Yang L; Li C
    Math Biosci Eng; 2023 May; 20(7):12454-12471. PubMed ID: 37501450
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A tensor-based scheme for stroke patients' motor imagery EEG analysis in BCI-FES rehabilitation training.
    Liu Y; Li M; Zhang H; Wang H; Li J; Jia J; Wu Y; Zhang L
    J Neurosci Methods; 2014 Jan; 222():238-49. PubMed ID: 24280103
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Classification of motor imagery EEG using deep learning increases performance in inefficient BCI users.
    Tibrewal N; Leeuwis N; Alimardani M
    PLoS One; 2022; 17(7):e0268880. PubMed ID: 35867703
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Feature extraction of four-class motor imagery EEG signals based on functional brain network.
    Ai Q; Chen A; Chen K; Liu Q; Zhou T; Xin S; Ji Z
    J Neural Eng; 2019 Apr; 16(2):026032. PubMed ID: 30699389
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Feature selection using regularized neighbourhood component analysis to enhance the classification performance of motor imagery signals.
    Malan NS; Sharma S
    Comput Biol Med; 2019 Apr; 107():118-126. PubMed ID: 30802693
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 30.